Web of Science:
A novel fixed point iteration process applied in solving the Caputo type fractional differential equations in Banach spaces

dc.contributor.authorOkeke, G.A.
dc.contributor.authorUgwuogor, C.I.
dc.contributor.authorAlqahtani, R.T.
dc.contributor.authorKaplan, M.
dc.contributor.authorAhmed, W.E.
dc.date.accessioned2024-07-29T05:39:46Z
dc.date.available2024-07-29T05:39:46Z
dc.date.issued2024.01.01
dc.description.abstractWe introduce the modified Picard-Ishikawa hybrid iterative scheme and establish some strong convergence results for the class of asymptotically generalized phi-pseudocontractive mappings in the intermediate sense in Banach spaces and approximate the fixed point of this class of mappings via the newly introduced iteration scheme. We construct some numerical examples to support our results. Furthermore, we apply the Picard-Ishikawa hybrid iteration scheme in solving the nonlinear Caputo type fractional differential equations. Our results generalize, extend and unify several existing results in literature.
dc.identifier.doi10.1142/S0129183124501766
dc.identifier.eissn1793-6586
dc.identifier.endpage
dc.identifier.issn0129-1831
dc.identifier.issue
dc.identifier.startpage
dc.identifier.urihttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001265288000001&DestLinkType=FullRecord&DestApp=WOS_CPL
dc.identifier.urihttps://hdl.handle.net/20.500.12597/33451
dc.identifier.volume
dc.identifier.wos001265288000001
dc.language.isoen
dc.relation.ispartofINTERNATIONAL JOURNAL OF MODERN PHYSICS C
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAsymptotically generalized Phi-pseudocontractive mappings in the intermediate sense, iterative process
dc.subjectBanach spaces
dc.subjectmodified Picard-Ishikawa hybrid iterative process
dc.subjectnonlinear Caputo type fractional differential equations
dc.titleA novel fixed point iteration process applied in solving the Caputo type fractional differential equations in Banach spaces
dc.typeArticle
dspace.entity.typeWos

Files