Web of Science:
Perspectives on deciphering thermotolerance mechanisms in Heliotropium thermophilum: integrating biochemical responses and gene expression patterns

dc.contributor.authorMuslu, A.S.
dc.contributor.authorÜnel, N.M.
dc.contributor.authorSaglam, A.
dc.contributor.authorBaloglu, M.C.
dc.contributor.authorKadioglu, A.
dc.date.accessioned2025-09-26T11:29:18Z
dc.date.issued2025.01.01
dc.description.abstractHigh temperature stress significantly impacts plant viability and productivity. Understanding thermotolerance mechanisms is essential for developing resilient crops. Heliotropium thermophilum, endemic to geothermal areas with extreme soil temperatures, serves as a model for studying plant high temperature stress responses. We aim to elucidate the biochemical and molecular mechanisms underlying thermotolerance in H. thermophilum. Biochemical assays quantified osmoprotectants (proline, soluble sugars, glycine-betaine, and total phenolics) and lipid peroxidation in H. thermophilum under different soil temperatures. Transcriptome analysis and quantitative Real-Time PCR were performed to validate the expression of genes involved in osmoprotectant biosynthesis, antioxidant defense, and cell wall modification. Glycine-betaine and proline levels increased by up to 189% and 104%, respectively, during peak stress. Elevated total phenolics correlated with reduced lipid peroxidation, indicating effective oxidative stress mitigation. Transcriptome analysis revealed significant upregulation of genes related to osmoprotectant biosynthesis, antioxidant defense, and cell wall modification, with notable expression of heat shock proteins and sugar transport genes. H. thermophilum employs an integrative biochemical and molecular strategy to withstand high soil temperatures, involving osmoprotectant accumulation, enhanced antioxidant defenses, and dynamic cell wall remodeling. These findings provide insights into thermotolerance mechanisms, offering potential targets for enhancing high temperature stress resilience in other crops. This study contributes to understanding plant-soil interactions and developing strategies to ensure agricultural productivity amid global climate change.
dc.identifier.doi10.1071/FP24288
dc.identifier.eissn1445-4416
dc.identifier.endpage
dc.identifier.issn1445-4408
dc.identifier.issue9
dc.identifier.startpage
dc.identifier.urihttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001570433500001&DestLinkType=FullRecord&DestApp=WOS_CPL
dc.identifier.urihttps://hdl.handle.net/20.500.12597/35031
dc.identifier.volume52
dc.identifier.wos001570433500001
dc.language.isoen
dc.relation.ispartofFUNCTIONAL PLANT BIOLOGY
dc.subjectantioxidant defense
dc.subjectcell wall modification
dc.subject<italic>Heliotropium thermophilum</italic>
dc.subjecthigh soil temperature
dc.subjectosmoprotectants
dc.subjectquantitative Real-Time PCR
dc.subjectthermotolerance
dc.subjecttranscriptome analysis
dc.titlePerspectives on deciphering thermotolerance mechanisms in Heliotropium thermophilum: integrating biochemical responses and gene expression patterns
dc.typeArticle
dspace.entity.typeWos

Files