Web of Science: Classification of Ionospheric Disturbances Using Long Short Term Memory Algorithm
dc.contributor.author | Gul, S.E. | |
dc.contributor.author | Karatay, S. | |
dc.contributor.author | Arikan, F. | |
dc.date.accessioned | 2024-12-07T16:12:24Z | |
dc.date.available | 2024-12-07T16:12:24Z | |
dc.date.issued | 2024.01.01 | |
dc.description.abstract | In this study, disturbances in the ionosphere during periods of geomagnetic activity and seismic activity are classified with the Long Short Term Memory algorithm, one of the Deep Learning algorithms. It is observed that the classification Accuracy is at least 84% in the classification of five earthquake and five disturbance days based on the Total Electron Content data input. | |
dc.identifier.doi | 10.1109/SIU61531.2024.10600803 | |
dc.identifier.endpage | ||
dc.identifier.issn | 2165-0608 | |
dc.identifier.issue | ||
dc.identifier.startpage | ||
dc.identifier.uri | https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001297894700072&DestLinkType=FullRecord&DestApp=WOS_CPL | |
dc.identifier.uri | https://hdl.handle.net/20.500.12597/33846 | |
dc.identifier.volume | ||
dc.identifier.wos | 001297894700072 | |
dc.language.iso | tr | |
dc.relation.ispartof | 32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Deep Learning | |
dc.subject | Long Short Term Memory | |
dc.subject | ionospheric disturbances | |
dc.subject | Total Electron Content | |
dc.title | Classification of Ionospheric Disturbances Using Long Short Term Memory Algorithm | |
dc.type | Other | |
dspace.entity.type | Wos |