Web of Science: Effect of Rubidium/Cesium Doping on (Lithium, Sodium, Potassium)-Ion Batteries through Germanium Silicon Oxide Anode Materials: An Architectural Design for Energy Storage Devices
| dc.contributor.author | Mollaamin, F. | |
| dc.contributor.author | Monajjemi, M. | |
| dc.date.accessioned | 2025-08-18T06:33:16Z | |
| dc.date.issued | 2025.01.01 | |
| dc.description.abstract | In this work, rubidium and cesium ions are studied as electrolyte additives for lithium-, sodium- or potassium-ion batteries. Therefore, it has been evaluated the promising alternative alkali metals of Rb- or Cs-doped lithium-, sodium-or potassium-ion batteries. A vast study on H-capture by LiRb (GeO-SiO), LiCs(GeO-SiO), NaRb(GeO-SiO), NaCs(GeO-SiO), KRb(GeO-SiO), KCs(GeO-SiO), was carried out including using density functional theory (DFT) computations at the CAM-B3LYP-D3/LANL2DZ,6-311+G(d, p) level of theory. The hypothesis of the hydrogen adsorption phenomenon was figured out by density distributions of CDD, TDOS, LOL for nanoclusters of LiRb(GeO-SiO)-2H(2), LiCs(GeO-SiO)-2H(2), NaRb(GeO-SiO)-2H(2), NaCs(GeO-SiO)-2H(2), KRb(GeO-SiO)-2H(2), KCs(GeO-SiO)-2H(2). As the benefits of lithium, sodium or potassium over Ge/Si possess its higher electron and hole motion, permitting lithium, sodium or potassium devices to operate at higher frequencies than Ge/Si devices. A small portion of Rb or Cs entered the Ge-Si layer to replace the Li, Na or K sites might improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. Finally, the results have shown that the cluster of KCs(GeO-SiO), LiCs(GeO-SiO) and NaCs(GeO-SiO) may have the most tensity for electron accepting owing to hydrogen grabbing. Among these, K-ion batteries seem to show the most promise in terms of Rb or Cs doping. | |
| dc.identifier.doi | 10.1134/S1990793125700435 | |
| dc.identifier.eissn | 1990-7923 | |
| dc.identifier.endpage | 751 | |
| dc.identifier.issn | 1990-7931 | |
| dc.identifier.issue | 3 | |
| dc.identifier.startpage | 737 | |
| dc.identifier.uri | https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001538000800024&DestLinkType=FullRecord&DestApp=WOS_CPL | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/34511 | |
| dc.identifier.volume | 19 | |
| dc.identifier.wos | 001538000800024 | |
| dc.language.iso | en | |
| dc.relation.ispartof | RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | cesium | |
| dc.subject | rubidium | |
| dc.subject | energy storage | |
| dc.subject | density of states | |
| dc.subject | charge distribution | |
| dc.subject | materials modeling | |
| dc.subject | hydrogen adsorption | |
| dc.title | Effect of Rubidium/Cesium Doping on (Lithium, Sodium, Potassium)-Ion Batteries through Germanium Silicon Oxide Anode Materials: An Architectural Design for Energy Storage Devices | |
| dc.type | Article | |
| dspace.entity.type | Wos |
