Web of Science:
Predicting tourism competitiveness with innovation: a machine learning approach

dc.contributor.authorArici, H.E.
dc.contributor.authorKöseoglu, M.A.
dc.contributor.authorAltinay, L.
dc.date.accessioned2025-09-15T11:15:48Z
dc.date.issued2025.01.01
dc.description.abstractThis study introduces an analytical model that establishes a connection between the factors that promote innovation in a country and the competitiveness of its tourism destinations. Invoking the international strategic competitiveness theory, this study is among the first to propose and empirically test the predictive roles of innovation facilitators on tourism competitiveness. Utilising longitudinal data from multiple countries from 2013 to 2022, we ran machine learning algorithms. The results show that several innovation facilitators, such as research and development and trade, diversification, and market scale, significantly predict competitiveness in tourism destinations. The results of this investigation enhance our knowledge of innovation and competitiveness in tourism locations globally.
dc.identifier.doi10.1080/13683500.2025.2550657
dc.identifier.eissn1747-7603
dc.identifier.endpage
dc.identifier.issn1368-3500
dc.identifier.issue
dc.identifier.startpage
dc.identifier.urihttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001561904300001&DestLinkType=FullRecord&DestApp=WOS_CPL
dc.identifier.urihttps://hdl.handle.net/20.500.12597/34964
dc.identifier.volume
dc.identifier.wos001561904300001
dc.language.isoen
dc.relation.ispartofCURRENT ISSUES IN TOURISM
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCompetitiveness
dc.subjectinnovation
dc.subjecttourism destination
dc.subjectlongitudinal study
dc.subjectmachine learning algorithms
dc.titlePredicting tourism competitiveness with innovation: a machine learning approach
dc.typeArticle
dspace.entity.typeWos

Files