Web of Science:
Predictors of citations: an analysis of highly-cited-papers in hospitality and tourism research using a machine learning approach

dc.contributor.authorPolat, E.
dc.contributor.authorÇelik, F.
dc.contributor.authorArici, H.E.
dc.contributor.authorKöseoglu, M.A.
dc.date.accessioned2025-01-15T12:14:16Z
dc.date.available2025-01-15T12:14:16Z
dc.date.issued2024.01.01
dc.description.abstractIn the dynamic nature of hospitality and tourism (H&T) research, it is increasingly difficult to distinguish highly-cited-papers (HCPs) due to the rapid proliferation of publications. This study employs machine learning techniques to identify the predictors of citation counts in H&T research over both short-term (5-year) and long-term (20-year) periods using HCPs. The analysis integrates a theoretical framework comprising normative theory and social constructivist theory. The findings indicate that international citation, PlumXmetrics, and early citations are the most effective determinants in both periods. Furthermore, while the importance of international citations is evident in both periods, the order of importance of the other two predictors changes. PlumXmetrics are more important in the long-term, while early citations are more important in the short-term. In conclusion, this comprehensive and up-to-date study of citation dynamics provides valuable insights for scholars and other stakeholders interested in enhancing the visibility and influence of H&T literature.
dc.identifier.doi10.1080/13683500.2024.2446410
dc.identifier.eissn1747-7603
dc.identifier.endpage
dc.identifier.issn1368-3500
dc.identifier.issue
dc.identifier.startpage
dc.identifier.urihttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001385385900001&DestLinkType=FullRecord&DestApp=WOS_CPL
dc.identifier.urihttps://hdl.handle.net/20.500.12597/33942
dc.identifier.volume
dc.identifier.wos001385385900001
dc.language.isoen
dc.relation.ispartofCURRENT ISSUES IN TOURISM
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHighly-cited-papers
dc.subjectcitation behaviour
dc.subjectpredictors of citations
dc.subjectmachine learning
dc.subjectnormative theory
dc.subjectsocial constructivist theory
dc.titlePredictors of citations: an analysis of highly-cited-papers in hospitality and tourism research using a machine learning approach
dc.typeArticle
dspace.entity.typeWos

Files