Web of Science:
A cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA)

dc.contributor.authorElberri, M.A.
dc.contributor.authorTokeser, Ü.
dc.contributor.authorRahebi, J.
dc.contributor.authorLopez-Guede, J.M.
dc.date.accessioned2024-05-22T11:00:38Z
dc.date.available2024-05-22T11:00:38Z
dc.date.issued2024.01.01
dc.description.abstractPhishing attacks pose a significant threat to online security, utilizing fake websites to steal sensitive user information. Deep learning techniques, particularly convolutional neural networks (CNNs), have emerged as promising tools for detecting phishing attacks. However, traditional CNN-based image classification methods face limitations in effectively identifying fake pages. To address this challenge, we propose an image-based coding approach for detecting phishing attacks using a CNN-LSTM hybrid model. This approach combines SMOTE, an enhanced GAN based on the Autoencoder network, and swarm intelligence algorithms to balance the dataset, select informative features, and generate grayscale images. Experiments on three benchmark datasets demonstrate that the proposed method achieves superior accuracy, precision, and sensitivity compared to other techniques, effectively identifying phishing attacks and enhancing online security.
dc.identifier.doi10.1007/s10207-024-00851-x
dc.identifier.eissn1615-5270
dc.identifier.endpage
dc.identifier.issn1615-5262
dc.identifier.issue
dc.identifier.startpage
dc.identifier.urihttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001218782700002&DestLinkType=FullRecord&DestApp=WOS_CPL
dc.identifier.urihttps://hdl.handle.net/20.500.12597/33170
dc.identifier.volume
dc.identifier.wos001218782700002
dc.language.isoen
dc.relation.ispartofINTERNATIONAL JOURNAL OF INFORMATION SECURITY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFake pages
dc.subjectPhishing attacks
dc.subjectSMOTE
dc.subjectDeep learning
dc.subjectGame theory
dc.subjectConvolutional neural networks
dc.subjectLSTM
dc.subjectFeature selection
dc.subjectAfrican vulture optimization algorithm (AVOA)
dc.titleA cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA)
dc.typeArticle
dspace.entity.typeWos

Files