Web of Science: Lucas Numbers Which Are Products of Two Pell Numbers
| dc.contributor.author | Dasdemir, A. | |
| dc.contributor.author | Varol, M. | |
| dc.date.accessioned | 2025-06-01T10:45:59Z | |
| dc.date.issued | 2025.01.01 | |
| dc.description.abstract | The main objective of the paper is to determine all the cases in which Lucas numbers are the product of two Pell numbers, or vice versa, when Pell numbers are the product of two Lucas numbers. To prove our results, we use the Matveev theorem for lower bounds for linear forms in logarithms and the Dujella and Peth & odblac; reduction lemma in Diophantine approximation. | |
| dc.identifier.doi | 10.1080/00150517.2024.2412958 | |
| dc.identifier.endpage | 83 | |
| dc.identifier.issn | 0015-0517 | |
| dc.identifier.issue | 1 | |
| dc.identifier.startpage | 78 | |
| dc.identifier.uri | https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001493758000005&DestLinkType=FullRecord&DestApp=WOS_CPL | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/34288 | |
| dc.identifier.volume | 63 | |
| dc.identifier.wos | 001493758000005 | |
| dc.language.iso | en | |
| dc.relation.ispartof | FIBONACCI QUARTERLY | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Lucas number | |
| dc.subject | Pell number | |
| dc.subject | linear form in logarithm | |
| dc.subject | Matveev theorem | |
| dc.subject | reduction method | |
| dc.title | Lucas Numbers Which Are Products of Two Pell Numbers | |
| dc.type | Article | |
| dspace.entity.type | Wos |
