Web of Science:
Lucas Numbers Which Are Products of Two Pell Numbers

dc.contributor.authorDasdemir, A.
dc.contributor.authorVarol, M.
dc.date.accessioned2025-06-01T10:45:59Z
dc.date.issued2025.01.01
dc.description.abstractThe main objective of the paper is to determine all the cases in which Lucas numbers are the product of two Pell numbers, or vice versa, when Pell numbers are the product of two Lucas numbers. To prove our results, we use the Matveev theorem for lower bounds for linear forms in logarithms and the Dujella and Peth & odblac; reduction lemma in Diophantine approximation.
dc.identifier.doi10.1080/00150517.2024.2412958
dc.identifier.endpage83
dc.identifier.issn0015-0517
dc.identifier.issue1
dc.identifier.startpage78
dc.identifier.urihttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001493758000005&DestLinkType=FullRecord&DestApp=WOS_CPL
dc.identifier.urihttps://hdl.handle.net/20.500.12597/34288
dc.identifier.volume63
dc.identifier.wos001493758000005
dc.language.isoen
dc.relation.ispartofFIBONACCI QUARTERLY
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLucas number
dc.subjectPell number
dc.subjectlinear form in logarithm
dc.subjectMatveev theorem
dc.subjectreduction method
dc.titleLucas Numbers Which Are Products of Two Pell Numbers
dc.typeArticle
dspace.entity.typeWos

Files