TRDizin: Discrete impulsive Sturm–Liouville equation with hyperbolic eigenparameter
No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Type
RESEARCH
Access
info:eu-repo/semantics/openAccess
Publication Status
Metrikler
Total Views
0
Total Downloads
0
Abstract
Let L denote the selfadjoint difference operator of second order with boundary and impulsive conditions generated in ℓ2 (N) by an−1yn−1 + bnyn + anyn+1 = (2 cosh z) yn , n ∈ N {k − 1, k, k + 1} , y0 = 0 , { yk+1 = θ1yk−1 △yk+1 = θ2 ▽ yk−1 , θ1, θ2 ∈ R, where {an}n∈N , {bn}n∈N are real sequences and △, ▽ are respectively forward and backward operators. In this paper, the spectral properties of L such as the resolvent operator, the spectrum, the eigenvalues, the scattering function and their properties are investigated. Moreover, an example about the scattering function and the existence of eigenvalues is given in the special cases, if ∑∞ n=1 n (|1 − an| + |bn|) < ∞.
Date
2022-05-01
Publisher
Description
Keywords
Citation
Küçükevci̇li̇oğlu, Y., Köprübaşi, T. (2022). Discrete impulsive Sturm–Liouville equation with hyperbolic eigenparameter. Turkish Journal of Mathematics, 46(SI-1), 387-396