TRDizin:
Unrestricted Fibonacci and Lucas Quaternions

dc.contributor.authorAhmet Daşdemir
dc.contributor.authorGöksal Bilgici
dc.date.accessioned2023-04-14T21:04:57Z
dc.date.available2023-04-14T21:04:57Z
dc.date.issued2021-03-01
dc.description.abstractMany quaternion numbers associated with Fibonacci and Lucas numbers or even theirgeneralizations have been defined and widely discussed so far. In all the studies, thecoefficients of these quaternions have been selected from consecutive terms of these numbers.In this study, we define other generalizations for the usual Fibonacci and Lucas quaternions.We also present some properties, including the Binet’s formulas and d’Ocagne’s identities,for these types of quaternions.
dc.identifier.citationDaşdemir, A., Bi̇lgi̇ci̇, G. (2021). Unrestricted Fibonacci and Lucas Quaternions. Fundamental journal of mathematics and applications (Online), 4(1), 1-9
dc.identifier.doi10.33401/fujma.752758
dc.identifier.eissn2645-8845
dc.identifier.endpage9
dc.identifier.issn
dc.identifier.issue1
dc.identifier.startpage1
dc.identifier.trdizin434048
dc.identifier.urihttps://search.trdizin.gov.tr/publication/detail/434048/unrestricted-fibonacci-and-lucas-quaternions
dc.identifier.urihttps://hdl.handle.net/20.500.12597/6817
dc.identifier.volume4
dc.language.isoeng
dc.relation.ispartofFundamental journal of mathematics and applications (Online)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleUnrestricted Fibonacci and Lucas Quaternions
dc.typeRESEARCH
dspace.entity.typeTrdizin
local.indexed.atTrDizin
relation.isPublicationOfTrdizin75f8f126-6946-4e68-b3bc-cc2fa9671222
relation.isPublicationOfTrdizin.latestForDiscovery75f8f126-6946-4e68-b3bc-cc2fa9671222

Files