Scopus:
Determination of biological studies and molecular docking calculations of isatin-thiosemicarbazone hybrid compounds

dc.contributor.authorKoçyiğit Ü.M.
dc.contributor.authorDoğan M.
dc.contributor.authorMuğlu H.
dc.contributor.authorTaslimi P.
dc.contributor.authorTüzün B.
dc.contributor.authorYakan H.
dc.contributor.authorBal H.
dc.contributor.authorGüzel E.
dc.contributor.authorGülçin İ.
dc.date.accessioned2023-04-11T22:20:54Z
dc.date.accessioned2023-04-12T00:28:46Z
dc.date.available2023-04-11T22:20:54Z
dc.date.available2023-04-12T00:28:46Z
dc.date.issued2022-09-15
dc.description.abstractDesign, synthesis, structural elucidation, and investigation of cytotoxic and antimicrobial activity, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzyme inhibition effects of isatin-thiosemicarbazone hybrid compounds (1–15) are reported in this study. Hybrid compounds (14 and 15) were synthesized, isolated, and characterized for the first time. FT-IR, 1H NMR, and 13C NMR spectroscopic methods and elemental analysis were used to characterize the structures of the compounds. In the enzymatic evaluation, hybrid compound 13 was observed as the most potent inhibitor of AChE with a Kİ value of 0.94 ± 0.13 µM (all compound Kİ values between 0.94 ± 0.13 and 4.47 ± 0.92), also this compound was observed as the most potent inhibitor of BChE with a Kİ value of 0.82 ± 0.11 µM (all compounds had Kİ values between of 0.82 ± 0.11 and 3.48 ± 0.92). Almost all compounds were shown better inhibition profile than standard compound. In the theoretical calculations, the comparison of the biological activities of isatin-thiosemicarbazone hybrid derivatives against enzymes was studied. The enzymes studied in docking calculations are AChE and BChE. Then, ADME/T analysis was conducted to examine the drug properties of these derivatives. Besides, the antimicrobial activity of these molecules was investigated by the microdilution method according to Clinical Laboratory Standards Institute (CLSI) criteria in the study. Cytotoxic activity of isatin-thiosemicarbazone hybrids was determined by the XTT cell viability assay on human breast cancer cell lines MCF-7 and MDA-MB-231. Among the hybrid compounds, compound 8 exhibited the most potent cytotoxic activity with IC50 values of 23.42 ± 0.21 µg/mL and 19.68 ± 0.23 µg/mL on MCF-7 and MDA-MB-231 cell lines, respectively. Overall, the hybridization of isatin and thiosemicarbazone skeleton has played an essential role in the inhibition of enzymes and cytotoxic activity.
dc.identifier.doi10.1016/j.molstruc.2022.133249
dc.identifier.issn222860
dc.identifier.scopus2-s2.0-85130091926
dc.identifier.urihttps://hdl.handle.net/20.500.12597/3770
dc.relation.ispartofJournal of Molecular Structure
dc.rightsfalse
dc.subject5-methoxyisatin | Antimicrobial activity | Cytotoxic activity | Enzyme inhibition activity | Molecular docking | Thiosemicarbazone
dc.titleDetermination of biological studies and molecular docking calculations of isatin-thiosemicarbazone hybrid compounds
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.volume1264
person.affiliation.nameCumhuriyet Üniversitesi
person.affiliation.nameCumhuriyet Üniversitesi
person.affiliation.nameKastamonu University
person.affiliation.nameBartin Üniversitesi
person.affiliation.nameCumhuriyet Üniversitesi
person.affiliation.nameOndokuz Mayis Üniversitesi
person.affiliation.nameCumhuriyet Üniversitesi
person.affiliation.nameSakarya University of Applied Sciences
person.affiliation.nameAtatürk Üniversitesi
person.identifier.scopus-author-id57189006957
person.identifier.scopus-author-id57218546302
person.identifier.scopus-author-id56195892800
person.identifier.scopus-author-id56658628800
person.identifier.scopus-author-id56699974000
person.identifier.scopus-author-id46462159400
person.identifier.scopus-author-id57693887600
person.identifier.scopus-author-id55579369300
person.identifier.scopus-author-id57694054300
relation.isPublicationOfScopuse2106d94-3849-422d-a54c-91c8fb5ef87d
relation.isPublicationOfScopus.latestForDiscoverye2106d94-3849-422d-a54c-91c8fb5ef87d

Files