Scopus:
Some unrestricted fibonacci and lucas hyper-complex numbers

dc.contributor.authorBilgici G.
dc.contributor.authorDaşdemir A.
dc.date.accessioned2023-04-12T01:32:56Z
dc.date.available2023-04-12T01:32:56Z
dc.date.issued2020-01-01
dc.description.abstractA number of studies have investigated the Fibonacci quater-nions and octonions that include consecutive terms of the Fibonacci sequence. This paper presents a new generalization of Fibonacci quater-nions, octonions and sedenions, where non-consecutive Fibonacci numbers are used. We present the Binet formulas, generating functions and some identities for these new types of hyper-complex numbers.
dc.identifier.doi10.12697/ACUTM.2020.24.03
dc.identifier.issn14062283
dc.identifier.scopus2-s2.0-85091383829
dc.identifier.urihttps://hdl.handle.net/20.500.12597/4870
dc.relation.ispartofActa et Commentationes Universitatis Tartuensis de Mathematica
dc.rightstrue
dc.subjectFibonacci octonion | Fibonacci quaternion | Fibonacci sedenion
dc.titleSome unrestricted fibonacci and lucas hyper-complex numbers
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue1
oaire.citation.volume24
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id6504516338
person.identifier.scopus-author-id54383209900
relation.isPublicationOfScopus82c8a420-6d2f-4202-bde6-72928d2b24f7
relation.isPublicationOfScopus.latestForDiscovery82c8a420-6d2f-4202-bde6-72928d2b24f7

Files