Scopus:
Embedding an edge-coloring of K(nr;λ<inf>1</inf>,λ<inf>2</inf>) into a Hamiltonian decomposition of K(nr+2;λ<inf>1</inf>,λ<inf>2</inf>)

dc.contributor.authorDemir M.
dc.contributor.authorRodger C.A.
dc.date.accessioned2023-04-12T01:37:36Z
dc.date.available2023-04-12T01:37:36Z
dc.date.issued2020-01-01
dc.description.abstractThis paper focuses on graph decompositions of (Formula presented.), the (Formula presented.) -partite multigraph in which each part has size (Formula presented.), where two vertices in the same part or different parts are joined by exactly (Formula presented.) edges or (Formula presented.) edges respectively. Assuming one condition, necessary and sufficient conditions are found to embed a k-edge-coloring of (Formula presented.) into a Hamiltonian decomposition of (Formula presented.). In the tightest case, this assumption is in fact proved to be a new necessary condition. Unlike previous results, of particular interest here is a necessary condition involving the existence of certain components in a related bipartite graph.
dc.identifier.doi10.1002/jgt.22468
dc.identifier.issn03649024
dc.identifier.scopus2-s2.0-85068897998
dc.identifier.urihttps://hdl.handle.net/20.500.12597/4941
dc.relation.ispartofJournal of Graph Theory
dc.rightsfalse
dc.subjectamalgamations | decomposition | detachments | edge-coloring | embedding
dc.titleEmbedding an edge-coloring of K(nr;λ<inf>1</inf>,λ<inf>2</inf>) into a Hamiltonian decomposition of K(nr+2;λ<inf>1</inf>,λ<inf>2</inf>)
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue1
oaire.citation.volume93
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.identifier.orcid0000-0002-7324-0465
person.identifier.scopus-author-id57209847704
person.identifier.scopus-author-id7006703520
relation.isPublicationOfScopus55a72446-069f-492f-b2f4-51e06e7abb50
relation.isPublicationOfScopus.latestForDiscovery55a72446-069f-492f-b2f4-51e06e7abb50

Files