Scopus:
Advanced power conversion efficiency in inventive plasma for hybrid toroidal reactor

dc.contributor.authorHançerlioğullari A.
dc.contributor.authorCini M.
dc.contributor.authorGüdal M.
dc.date.accessioned2023-04-12T03:06:16Z
dc.date.available2023-04-12T03:06:16Z
dc.date.issued2013-01-01
dc.description.abstractApex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI 2 BeF 4 ), lead-lithium (PbLi), Li-Sn, thin-lityum (Li 20 Sn 80 ) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI 2 BeF 4 ) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI 2 BeF 4 ), PbLi, and thin-lityum (Li 20 Sn 80 ) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared. © 2013 Springer Science+Business Media New York.
dc.identifier.doi10.1007/s10894-013-9621-1
dc.identifier.issn01640313
dc.identifier.scopus2-s2.0-84887235156
dc.identifier.urihttps://hdl.handle.net/20.500.12597/6039
dc.relation.ispartofJournal of Fusion Energy
dc.rightsfalse
dc.subjectApex | Blanket | Hybrid | Mcnp | Toroid
dc.titleAdvanced power conversion efficiency in inventive plasma for hybrid toroidal reactor
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.issue6
oaire.citation.volume32
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id18133515900
person.identifier.scopus-author-id55207006200
person.identifier.scopus-author-id55920299100
relation.isPublicationOfScopus52c8e3b3-76dc-481d-b585-13e6d330c559
relation.isPublicationOfScopus.latestForDiscovery52c8e3b3-76dc-481d-b585-13e6d330c559

Files