Scopus:
New generalizations of Fibonacci and Lucas sequences

dc.contributor.authorBilgici G.
dc.date.accessioned2023-04-12T03:00:26Z
dc.date.available2023-04-12T03:00:26Z
dc.date.issued2014-01-01
dc.description.abstractWe consider the sequences {fn}∞n=0 and {ln}∞n=0 which are generated bythe recurrence relations fn=2afn-1+(b2-a)fn-2 and ln=2aln-1+(b2-a)ln-2 with the initial conditions f0=0, f1=1 and l0=2, l1=2a where a and b are any non - zero real numbers. We obtain generating functions, Binet formulas for these two sequences and give generalizations of some well - known identities.
dc.identifier.doi10.12988/ams.2014.4162
dc.identifier.issn1312885X
dc.identifier.scopus2-s2.0-84898862578
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5949
dc.relation.ispartofApplied Mathematical Sciences
dc.rightsfalse
dc.subjectFibonacci sequence | Lucas sequence | Pell - lucas sequence | Pell sequence
dc.titleNew generalizations of Fibonacci and Lucas sequences
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue29-32
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id6504516338
relation.isPublicationOfScopusa61b0138-4e67-4c8a-82e4-225e0272cec3
relation.isPublicationOfScopus.latestForDiscoverya61b0138-4e67-4c8a-82e4-225e0272cec3

Files