Scopus: New generalizations of Fibonacci and Lucas sequences
| dc.contributor.author | Bilgici G. | |
| dc.date.accessioned | 2023-04-12T03:00:26Z | |
| dc.date.available | 2023-04-12T03:00:26Z | |
| dc.date.issued | 2014-01-01 | |
| dc.description.abstract | We consider the sequences {fn}∞n=0 and {ln}∞n=0 which are generated bythe recurrence relations fn=2afn-1+(b2-a)fn-2 and ln=2aln-1+(b2-a)ln-2 with the initial conditions f0=0, f1=1 and l0=2, l1=2a where a and b are any non - zero real numbers. We obtain generating functions, Binet formulas for these two sequences and give generalizations of some well - known identities. | |
| dc.identifier.doi | 10.12988/ams.2014.4162 | |
| dc.identifier.issn | 1312885X | |
| dc.identifier.scopus | 2-s2.0-84898862578 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/5949 | |
| dc.relation.ispartof | Applied Mathematical Sciences | |
| dc.rights | false | |
| dc.subject | Fibonacci sequence | Lucas sequence | Pell - lucas sequence | Pell sequence | |
| dc.title | New generalizations of Fibonacci and Lucas sequences | |
| dc.type | Article | |
| dspace.entity.type | Scopus | |
| local.indexed.at | Scopus | |
| oaire.citation.issue | 29-32 | |
| person.affiliation.name | Kastamonu University | |
| person.identifier.scopus-author-id | 6504516338 | |
| relation.isPublicationOfScopus | a61b0138-4e67-4c8a-82e4-225e0272cec3 | |
| relation.isPublicationOfScopus.latestForDiscovery | a61b0138-4e67-4c8a-82e4-225e0272cec3 |
