Scopus:
Principal functions of boundary-value problem with quadratic spectral parameter in boundary conditions

dc.contributor.authorYokus N.
dc.contributor.authorKoprubasi T.
dc.date.accessioned2023-04-12T02:33:05Z
dc.date.available2023-04-12T02:33:05Z
dc.date.issued2017-01-01
dc.description.abstractIn this paper, we determine the principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) -y″ + q(x)y = λ2y, x ∊ ℝ+ = [0, ∞] (α0 + α1λ + a2λ2)y′(0) – (β0 + β1 λ + β2λ2)y(0) = 0, where q is a complex-valued function, αi, βi ∊ ℂ, i = 0,1,2 and λ is a eigenparameter, and introduce the convergence properties of principal functions.
dc.identifier.scopus2-s2.0-85015301507
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5591
dc.relation.ispartofGazi University Journal of Science
dc.rightsfalse
dc.subjectDifferential operator | Eigenvalue | Jost solution | Non-selfadjoint | Principal function | Spectral analysis | Spectral singularity
dc.titlePrincipal functions of boundary-value problem with quadratic spectral parameter in boundary conditions
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue1
oaire.citation.volume30
person.affiliation.nameKaramanoğlu Mehmetbey Üniversitesi
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id35146941200
person.identifier.scopus-author-id35307415400

Files