Scopus: Experimental and theoretical approaches on thermal and structural properties of Zn doped BSCCO glass ceramics
No Thumbnail Available
Authors
Journal Title
Journal ISSN
Volume Title
Type
Article
Access
true
Publication Status
Metrikler
Total Views
0
Total Downloads
0
Abstract
Thermal properties of Cu-Zn partially substituted Bi1.8Sr2Ca2Cu3.2-xZnxO10+δ (x = 0, 0.1 and 0.5) glass-ceramic systems have been investigated with the help of a differential thermal analyzer (DTA) by using Johnson-Mehl-Avrami-Kolmogorov (JMAK) approximation. Non-isothermal crystallization kinetics of the samples has been tested. The calculated values of activation energy of crystallization (E) and Avrami parameter (n) ranged between 306.1 and 338.3 kJ·mol-1 and 1.29 and 3.59, respectively. Crystallization kinetics was compared following the partial substitution, before and after Zn doping of the sample. In addition, by using a scanning electron microscope (SEM) and X-ray powder diffractometer (XRD), structural properties of Zn doped BSCCO glass-ceramic samples were determined. Surface morphology of the samples was studied by SEM measurements. Lattice parameters and volume of the samples were calculated from the XRD measurements.
Date
2016-03-01
Publisher
Description
Keywords
BSCCO | thermal properties | Zn-doped glass-ceramics