Scopus: Spectrum of the quadratic eigenparameter dependent discrete Dirac equations
| dc.contributor.author | Koprubasi T. | |
| dc.date.accessioned | 2023-04-12T02:59:37Z | |
| dc.date.available | 2023-04-12T02:59:37Z | |
| dc.date.issued | 2014-01-01 | |
| dc.description.abstract | Let us consider the Boundary Value Problem (BVP) for the discrete Dirac equations {equation presented}, where (an), (bn), (p n) and (qn), n ∈ N are complex sequences, γi,βi ∈ C, i = 0, 1, 2, and λ is an eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that this BVP has a finite number of eigenvalues and spectral singularities with a finite number of multiplicities, if {equation presented}, holds, for some ε > 0 and 1/2 ≤ δ ≤ 1. ©2014 Koprubasi; licensee Springer. | |
| dc.identifier.doi | 10.1186/1687-1847-2014-148 | |
| dc.identifier.issn | 16871839 | |
| dc.identifier.scopus | 2-s2.0-84901587790 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/5938 | |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | true | |
| dc.subject | Discrete Dirac equations | Discrete spectrum | Eigenparameter | Spectral analysis | Spectral singularities | |
| dc.title | Spectrum of the quadratic eigenparameter dependent discrete Dirac equations | |
| dc.type | Article | |
| dspace.entity.type | Scopus | |
| local.indexed.at | Scopus | |
| oaire.citation.issue | 1 | |
| oaire.citation.volume | 2014 | |
| person.affiliation.name | Kastamonu University | |
| person.identifier.scopus-author-id | 35307415400 | |
| relation.isPublicationOfScopus | 5e0d5faf-4447-41ca-be8c-6a9acfc06178 | |
| relation.isPublicationOfScopus.latestForDiscovery | 5e0d5faf-4447-41ca-be8c-6a9acfc06178 |
