Scopus:
Spectrum of the quadratic eigenparameter dependent discrete Dirac equations

dc.contributor.authorKoprubasi T.
dc.date.accessioned2023-04-12T02:59:37Z
dc.date.available2023-04-12T02:59:37Z
dc.date.issued2014-01-01
dc.description.abstractLet us consider the Boundary Value Problem (BVP) for the discrete Dirac equations {equation presented}, where (an), (bn), (p n) and (qn), n ∈ N are complex sequences, γi,βi ∈ C, i = 0, 1, 2, and λ is an eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that this BVP has a finite number of eigenvalues and spectral singularities with a finite number of multiplicities, if {equation presented}, holds, for some ε > 0 and 1/2 ≤ δ ≤ 1. ©2014 Koprubasi; licensee Springer.
dc.identifier.doi10.1186/1687-1847-2014-148
dc.identifier.issn16871839
dc.identifier.scopus2-s2.0-84901587790
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5938
dc.relation.ispartofAdvances in Difference Equations
dc.rightstrue
dc.subjectDiscrete Dirac equations | Discrete spectrum | Eigenparameter | Spectral analysis | Spectral singularities
dc.titleSpectrum of the quadratic eigenparameter dependent discrete Dirac equations
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue1
oaire.citation.volume2014
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id35307415400
relation.isPublicationOfScopus5e0d5faf-4447-41ca-be8c-6a9acfc06178
relation.isPublicationOfScopus.latestForDiscovery5e0d5faf-4447-41ca-be8c-6a9acfc06178

Files