Scopus:
A cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA)

dc.contributor.authorElberri, M.A.
dc.contributor.authorTokeşer, Ü.
dc.contributor.authorRahebi, J.
dc.contributor.authorLopez-Guede, J.M.
dc.date.accessioned2024-07-22T09:11:23Z
dc.date.available2024-07-22T09:11:23Z
dc.date.issued2024
dc.description.abstractPhishing attacks pose a significant threat to online security, utilizing fake websites to steal sensitive user information. Deep learning techniques, particularly convolutional neural networks (CNNs), have emerged as promising tools for detecting phishing attacks. However, traditional CNN-based image classification methods face limitations in effectively identifying fake pages. To address this challenge, we propose an image-based coding approach for detecting phishing attacks using a CNN-LSTM hybrid model. This approach combines SMOTE, an enhanced GAN based on the Autoencoder network, and swarm intelligence algorithms to balance the dataset, select informative features, and generate grayscale images. Experiments on three benchmark datasets demonstrate that the proposed method achieves superior accuracy, precision, and sensitivity compared to other techniques, effectively identifying phishing attacks and enhancing online security.
dc.identifier10.1007/s10207-024-00851-x
dc.identifier.doi10.1007/s10207-024-00851-x
dc.identifier.endpage2606
dc.identifier.issn16155262
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85192056954
dc.identifier.startpage2583
dc.identifier.urihttps://hdl.handle.net/20.500.12597/33430
dc.identifier.volume23
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofInternational Journal of Information Security
dc.relation.ispartofseriesInternational Journal of Information Security
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAfrican vulture optimization algorithm (AVOA), Convolutional neural networks, Deep learning, Fake pages, Feature selection, Game theory, LSTM, Phishing attacks, SMOTE
dc.titleA cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA)
dc.typearticle
dspace.entity.typeScopus
oaire.citation.issue4
oaire.citation.volume23
person.affiliation.nameUniversity of Kastamonua
person.affiliation.nameKastamonu University
person.affiliation.nameIstanbul Topkapi University
person.affiliation.nameUniversidad del Pais Vasco
person.identifier.scopus-author-id59013760000
person.identifier.scopus-author-id57191078121
person.identifier.scopus-author-id36451137000
person.identifier.scopus-author-id34880300000

Files