Scopus:
Role of the Health System in Combating Covid-19: Cross-Section Analysis and Artificial Neural Network Simulation for 124 Country Cases

dc.contributor.authorBayraktar Y.
dc.contributor.authorÖzyılmaz A.
dc.contributor.authorToprak M.
dc.contributor.authorIşık E.
dc.contributor.authorBüyükakın F.
dc.contributor.authorOlgun M.F.
dc.date.accessioned2023-04-12T01:00:43Z
dc.date.available2023-04-12T01:00:43Z
dc.date.issued2021-01-01
dc.description.abstractIn the fight against Covid-19, developed countries and developing countries diverge in success. This drew attention to the discussion of how different health systems and different levels of health spending are effective in combating Covid-19. In this study, the role of the health system in the fight against Covid-19 is discussed. In this context, the number of hospital beds, the number of doctors, life expectancy at 60, universal health service and the share of health expenditures in GDP were used as health indicators. In the study, firstly 2020 data was estimated by using the Artificial Neural Networks simulation method and this year was used in the analysis. The model, with the data of 124 countries, was estimated using the cross-sectional OLS regression method. The estimation results show that the number of hospital beds, number of doctors and life expectancy at the age of 60 have statistically significant and positive effects on the ratio of Covid-19 recovered/cases. Universal health service and share of health expenditures in GDP are not significant statistically on the cases and recovered. Hospital bed capacity is the most effective variable on the recovered/case ratio.
dc.identifier.doi10.1080/19371918.2020.1856750
dc.identifier.issn19371918
dc.identifier.pubmed33369535
dc.identifier.scopus2-s2.0-85098479390
dc.identifier.urihttps://hdl.handle.net/20.500.12597/4614
dc.relation.ispartofSocial Work in Public Health
dc.rightsfalse
dc.subjectCovid-19 | global health | healthcare system | Novel Coronavirus
dc.titleRole of the Health System in Combating Covid-19: Cross-Section Analysis and Artificial Neural Network Simulation for 124 Country Cases
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.issue2
oaire.citation.volume36
person.affiliation.nameIstanbul Üniversitesi
person.affiliation.nameGümüşhane Üniversitesi
person.affiliation.nameİstanbul Sabahattin Zaim University
person.affiliation.nameTurgut Özal Üniversitesi
person.affiliation.nameKocaeli Üniversitesi
person.affiliation.nameKastamonu University
person.identifier.orcid0000-0002-3499-4571
person.identifier.orcid0000-0001-9201-2508
person.identifier.orcid0000-0001-9217-6318
person.identifier.orcid0000-0002-6179-5746
person.identifier.orcid0000-0002-0226-7265
person.identifier.orcid0000-0002-2728-0714
person.identifier.scopus-author-id57221204085
person.identifier.scopus-author-id57221197834
person.identifier.scopus-author-id6603896828
person.identifier.scopus-author-id57205761461
person.identifier.scopus-author-id57221203406
person.identifier.scopus-author-id57221205634
relation.isPublicationOfScopusbb6c0be8-bd29-4098-bbd3-fe15e69a84aa
relation.isPublicationOfScopus.latestForDiscoverybb6c0be8-bd29-4098-bbd3-fe15e69a84aa

Files