Scopus:
New analytical solutions of (2 + 1)-dimensional conformable time fractional Zoomeron equation via two distinct techniques

dc.contributor.authorKumar D.
dc.contributor.authorKaplan M.
dc.date.accessioned2023-04-12T02:09:37Z
dc.date.available2023-04-12T02:09:37Z
dc.date.issued2018-10-01
dc.description.abstractIn this paper, the new exact solutions for the (2 + 1) dimensional time fractional Zoomeron equation have been derived via two efficient analytical techniques, which are the extended exp(−Φ(ξ))-expansion technique and the novel exponential rational function technique. The fractional derivative is designated based on the conformable derivative sense. Consequently, many new closed form solutions of this equation are obtained including hyperbolic function solutions, trigonometric function solutions and exponential function solutions by using these techniques. The obtained results show that the applied methods are very effective, reliable and simple for solving other nonlinear fractional differential equations in mathematical physics and nonlinear optics.
dc.identifier.doi10.1016/j.cjph.2018.09.013
dc.identifier.issn05779073
dc.identifier.scopus2-s2.0-85054391240
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5240
dc.relation.ispartofChinese Journal of Physics
dc.rightsfalse
dc.subjectConformable fractional derivative | Exact solutions | Extended exp (−Φ(ξ))-expansion technique | Novel exponential rational function technique | Time fractional Zoomeron equation
dc.titleNew analytical solutions of (2 + 1)-dimensional conformable time fractional Zoomeron equation via two distinct techniques
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.issue5
oaire.citation.volume56
person.affiliation.nameUniversity of Tsukuba
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id57199657577
person.identifier.scopus-author-id56368056100
relation.isPublicationOfScopus33a5487c-7268-4c7e-9cba-e3e80983586f
relation.isPublicationOfScopus.latestForDiscovery33a5487c-7268-4c7e-9cba-e3e80983586f

Files