Scopus:
Predicting the predisposition to colorectal cancer based on SNP profiles of immune phenotypes using supervised learning models

dc.contributor.authorCakmak A.
dc.contributor.authorAyaz H.
dc.contributor.authorArıkan S.
dc.contributor.authorIbrahimzada A.R.
dc.contributor.authorDemirkol Ş.
dc.contributor.authorSönmez D.
dc.contributor.authorHakan M.T.
dc.contributor.authorSürmen S.T.
dc.contributor.authorHorozoğlu C.
dc.contributor.authorDoğan M.B.
dc.contributor.authorKüçükhüseyin Ö.
dc.contributor.authorCacına C.
dc.contributor.authorKıran B.
dc.contributor.authorZeybek Ü.
dc.contributor.authorBaysan M.
dc.contributor.authorYaylım İ.
dc.date.accessioned2023-04-11T22:14:21Z
dc.date.accessioned2023-04-12T00:29:12Z
dc.date.available2023-04-11T22:14:21Z
dc.date.available2023-04-12T00:29:12Z
dc.date.issued2023-01-01
dc.description.abstractThis study explores the machine learning-based assessment of predisposition to colorectal cancer based on single nucleotide polymorphisms (SNP). Such a computational approach may be used as a risk indicator and an auxiliary diagnosis method that complements the traditional methods such as biopsy and CT scan. Moreover, it may be used to develop a low-cost screening test for the early detection of colorectal cancers to improve public health. We employ several supervised classification algorithms. Besides, we apply data imputation to fill in the missing genotype values. The employed dataset includes SNPs observed in particular colorectal cancer-associated genomic loci that are located within DNA regions of 11 selected genes obtained from 115 individuals. We make the following observations: (i) random forest-based classifier using one-hot encoding and K-nearest neighbor (KNN)-based imputation performs the best among the studied classifiers with an F1 score of 89% and area under the curve (AUC) score of 0.96. (ii) One-hot encoding together with K-nearest neighbor-based data imputation increases the F1 scores by around 26% in comparison to the baseline approach which does not employ them. (iii) The proposed model outperforms a commonly employed state-of-the-art approach, ColonFlag, under all evaluated settings by up to 24% in terms of the AUC score. Based on the high accuracy of the constructed predictive models, the studied 11 genes may be considered a gene panel candidate for colon cancer risk screening. Graphical Abstract: [Figure not available: see fulltext.].
dc.identifier.doi10.1007/s11517-022-02707-9
dc.identifier.issn1400118
dc.identifier.scopus2-s2.0-85141696341
dc.identifier.urihttps://hdl.handle.net/20.500.12597/3864
dc.relation.ispartofMedical and Biological Engineering and Computing
dc.rightsfalse
dc.subjectCancer screening | Classification | Colorectal cancer | Immune checkpoints | Machine learning
dc.titlePredicting the predisposition to colorectal cancer based on SNP profiles of immune phenotypes using supervised learning models
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.issue1
oaire.citation.volume61
person.affiliation.nameİstanbul Teknik Üniversitesi
person.affiliation.nameMarmara Üniversitesi
person.affiliation.nameBasaksehir Cam and Sakura City Hospital
person.affiliation.nameMarmara Üniversitesi
person.affiliation.nameBiruni Üniversitesi
person.affiliation.nameIstanbul Üniversitesi
person.affiliation.nameIstanbul Üniversitesi
person.affiliation.nameIstanbul Üniversitesi
person.affiliation.nameHaliç Üniversitesi
person.affiliation.nameT. C. Sağlık Bakanlığı, Taksim Eğitim ve Araştirma Hastanesi
person.affiliation.nameIstanbul Üniversitesi
person.affiliation.nameIstanbul Üniversitesi
person.affiliation.nameKastamonu University
person.affiliation.nameIstanbul Üniversitesi
person.affiliation.nameİstanbul Teknik Üniversitesi
person.affiliation.nameIstanbul Üniversitesi
person.identifier.orcid0000-0002-1382-6130
person.identifier.scopus-author-id22952669700
person.identifier.scopus-author-id57219809020
person.identifier.scopus-author-id55962065600
person.identifier.scopus-author-id57219808592
person.identifier.scopus-author-id57211435413
person.identifier.scopus-author-id57222665560
person.identifier.scopus-author-id25229644200
person.identifier.scopus-author-id57218577236
person.identifier.scopus-author-id56449164600
person.identifier.scopus-author-id56765313800
person.identifier.scopus-author-id28167476100
person.identifier.scopus-author-id35602740700
person.identifier.scopus-author-id7004830306
person.identifier.scopus-author-id6603163490
person.identifier.scopus-author-id8386447300
person.identifier.scopus-author-id6603287153
relation.isPublicationOfScopus1b8740cf-359c-4923-a889-6e6180343c85
relation.isPublicationOfScopus.latestForDiscovery1b8740cf-359c-4923-a889-6e6180343c85

Files