Scopus:
Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter

dc.contributor.authorYokus N.
dc.contributor.authorKoprubasi T.
dc.date.accessioned2023-04-12T02:50:43Z
dc.date.available2023-04-12T02:50:43Z
dc.date.issued2015-01-01
dc.description.abstractIn this paper, we consider the operator L generated in L2 (R+) by the Sturm-Liouville equation (formula presented), and the boundary condition (formula presented), where q is a complex-valued function, (formula presented) is an eigenparameter. Under the conditions(formula presented), using the uniqueness theorems of analytic functions, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.
dc.identifier.doi10.1186/s13660-015-0563-1
dc.identifier.issn10255834
dc.identifier.scopus2-s2.0-84961348279
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5803
dc.relation.ispartofJournal of Inequalities and Applications
dc.rightstrue
dc.subjecteigenparameter | eigenvalues | spectral singularities | Sturm-Liouville equations
dc.titleSpectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue1
oaire.citation.volume2015
person.affiliation.nameKaramanoğlu Mehmetbey Üniversitesi
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id35146941200
person.identifier.scopus-author-id35307415400
relation.isPublicationOfScopusa547237c-7141-4af8-a524-a9ba745590e8
relation.isPublicationOfScopus.latestForDiscoverya547237c-7141-4af8-a524-a9ba745590e8

Files