Scopus:
Fibonacci and lucas sedenions

dc.contributor.authorBilgici G.
dc.contributor.authorTokeşer Ü.
dc.contributor.authorÜnal Z.
dc.date.accessioned2023-04-12T02:33:44Z
dc.date.available2023-04-12T02:33:44Z
dc.date.issued2016-12-27
dc.description.abstractThe sedenions form a 16-dimensional non-associative and non-commutative algebra over the set of real numbers. In this paper, we introduce the Fibonacci and Lucas sedenions. We present generating functions and Binet formulas for the Fibonacci and Lucas sedenions, and derive adaptations for some well-known identities of Fibonacci and Lucas numbers.
dc.identifier.scopus2-s2.0-85012034411
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5601
dc.relation.ispartofJournal of Integer Sequences
dc.rightsfalse
dc.subjectFibonacci sedenion | Lucas sedenion | Sedenion
dc.titleFibonacci and lucas sedenions
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue1
oaire.citation.volume20
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id6504516338
person.identifier.scopus-author-id57191078121
person.identifier.scopus-author-id56675999300

Files