Scopus: Crystal Structure and Vibrational Spectra of 3-Chloro-4-Phenyl-6-(Morpholine-4-yl)-Pyridazine by Hartree-Fock and Density Functional Methods
dc.contributor.author | Aydin A. | |
dc.contributor.author | Arslan H. | |
dc.contributor.author | Şüküroʇlu M. | |
dc.contributor.author | Akkurt M. | |
dc.contributor.author | Büyükgüngör O. | |
dc.date.accessioned | 2023-04-12T02:50:01Z | |
dc.date.available | 2023-04-12T02:50:01Z | |
dc.date.issued | 2015-01-02 | |
dc.description.abstract | The title compound, 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine (I), was prepared and characterized using elemental analysis and FT-IR and 1H NMR spectroscopy studies. The crystal and molecular structure of the title compound was determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic space group P212121, Z = 8 with a = 7.5743 (3) Å, b = 14.8922 (8) Å, c = 23.3472 (9) Å, V = 2633.5 (2) Å3, and Dx = 1.391 Mg/m3. The title compound, C14H14ClN3O, crystallizes with two independent molecules A and B in the asymmetric unit, wherein the morpholine ring adopts a distorted chair conformation. The 1,6-dihydropyridazine ring creates dihedral angles of 47.0(3)° (in molecule A) and 47.9(2)° (in molecule B) with the phenyl ring, respectively. The crystal studied was an inversion twin with a 0.56(12):0.44(12) domain ratio. The molecular structure, vibrational frequencies, and intensities of the title compound were calculated using Hartree-Fock and density functional theory methods (BLYP, B3LYP, B3PW91, and mPW1PW91) using the 6-31G(d,p) basis set. The calculated geometric parameters were compared to the corresponding single crystal X-ray structure of the title compound. Comparison of the theoretical and experimental geometries of the title compound show that the X-ray parameters are in good agreement with the optimized molecular structure of the title compound. In addition, the harmonic vibrations computed for this compound using the B3LYP/6-31G(d,p) method are in good agreement with the observed vibrational spectral data. Theoretical vibrational spectra of the title compound were interpreted using PEDs and the VEDA 4 program. The superior performance of these investigated methods was calculated using the PAVF 1.0 program. © 2015 | |
dc.identifier.doi | 10.1080/15421406.2014.915664 | |
dc.identifier.issn | 15421406 | |
dc.identifier.scopus | 2-s2.0-84944790028 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12597/5792 | |
dc.relation.ispartof | Molecular Crystals and Liquid Crystals | |
dc.rights | false | |
dc.subject | Ab initio calculations | alkanoic acids | B3LYP | DFT | infrared spectrum | non-steroidal anti-inflammatory drugs | vibrational frequencies | |
dc.title | Crystal Structure and Vibrational Spectra of 3-Chloro-4-Phenyl-6-(Morpholine-4-yl)-Pyridazine by Hartree-Fock and Density Functional Methods | |
dc.type | Article | |
dspace.entity.type | Scopus | |
oaire.citation.issue | 1 | |
oaire.citation.volume | 606 | |
person.affiliation.name | Kastamonu University | |
person.affiliation.name | Mersin Üniversitesi | |
person.affiliation.name | Gazi Üniversitesi | |
person.affiliation.name | Erciyes Üniversitesi | |
person.affiliation.name | Ondokuz Mayis University Faculty of Science and Arts | |
person.identifier.scopus-author-id | 35602644000 | |
person.identifier.scopus-author-id | 57200576372 | |
person.identifier.scopus-author-id | 56913274700 | |
person.identifier.scopus-author-id | 14832237900 | |
person.identifier.scopus-author-id | 36039473500 | |
relation.isPublicationOfScopus | 24df4a58-aa55-46f4-bb02-da9d8f41864e | |
relation.isPublicationOfScopus.latestForDiscovery | 24df4a58-aa55-46f4-bb02-da9d8f41864e |