Scopus:
On some novel solution solutions to the generalized Schrödinger-Boussinesq equations for the interaction between complex short wave and real long wave envelope

No Thumbnail Available

Journal Title

Journal ISSN

Volume Title

Type

Article

Access

true

Publication Status

Metrikler

Search on Google Scholar

Total Views

0

Total Downloads

0

Abstract

This paper explores some novel solutions to the generalized Schrödinger-Boussinesq (gSBq) equations, which describe the interaction between complex short wave and real long wave envelope. In order to derive some novel complex hyperbolic and complex trigonometric function solutions, the sine-Gordon equation method (sGEM) is applied to the gSBq equations. Novel complex hyperbolic and trigonometric function solutions are expressed by the dark, bright, combo dark-bright, W-shaped, M-shaped, singular, combo singular, and periodic wave solutions. The accuracy of the explored solitons is examined under the back substitution to the corresponding equations via the symbolic computation software Maple. It is found from the back substitution outcomes that all soliton solutions satisfy the original equations. The proper significance of the explored outcomes is demonstrated by the three-dimensional (3D) and two-dimensional (2D) graphs, which are presented under the selection of particular values of the free parameters. All the combo-soliton (W-shaped, M-shaped, and periodic wave) solutions are found to be new for the interaction between complex short wave and real long wave envelope in laser physics that show the novelty of the study. Moreover, the applied method provides an efficient tool for exploring novel soliton solutions, and it overcomes the complexities of the solitary wave ansatz method.

Date

2022-08-01

Publisher

Description

Keywords

Generalized Schrödinger-Boussinesq equations | Sine-Gordon expansion method | Soliton solutions

Citation