Scopus:
Two generalizations of Lucas sequence

dc.contributor.authorBilgici G.
dc.date.accessioned2023-04-12T02:54:04Z
dc.date.available2023-04-12T02:54:04Z
dc.date.issued2014-10-15
dc.description.abstractWe define a generalization of Lucas sequence by the recurrence relation lm=blm-1+lm-2 (if m is even) or l m=alm-1+lm-2 (if m is odd) with initial conditions l0=2 and l1=a. We obtain some properties of the sequence {lm}m=0 and give some relations between this sequence and the generalized Fibonacci sequence {qm}m=0 which is defined in Edson and Yayenie (2009). Also, we give corresponding generalized Lucas sequence with the generalized Fibonacci sequence given in Yayenie (2011). © 2014 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.amc.2014.07.111
dc.identifier.issn00963003
dc.identifier.scopus2-s2.0-84906544779
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5854
dc.relation.ispartofApplied Mathematics and Computation
dc.rightsfalse
dc.subjectBinet formula | Generalized Fibonacci sequence | Generalized Lucas sequence | Generating function
dc.titleTwo generalizations of Lucas sequence
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.volume245
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id6504516338
relation.isPublicationOfScopus0392f159-2eca-4274-8ed1-cd24debaf5f6
relation.isPublicationOfScopus.latestForDiscovery0392f159-2eca-4274-8ed1-cd24debaf5f6

Files