Scopus: Two generalizations of Lucas sequence
| dc.contributor.author | Bilgici G. | |
| dc.date.accessioned | 2023-04-12T02:54:04Z | |
| dc.date.available | 2023-04-12T02:54:04Z | |
| dc.date.issued | 2014-10-15 | |
| dc.description.abstract | We define a generalization of Lucas sequence by the recurrence relation lm=blm-1+lm-2 (if m is even) or l m=alm-1+lm-2 (if m is odd) with initial conditions l0=2 and l1=a. We obtain some properties of the sequence {lm}m=0 and give some relations between this sequence and the generalized Fibonacci sequence {qm}m=0 which is defined in Edson and Yayenie (2009). Also, we give corresponding generalized Lucas sequence with the generalized Fibonacci sequence given in Yayenie (2011). © 2014 Elsevier Inc. All rights reserved. | |
| dc.identifier.doi | 10.1016/j.amc.2014.07.111 | |
| dc.identifier.issn | 00963003 | |
| dc.identifier.scopus | 2-s2.0-84906544779 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/5854 | |
| dc.relation.ispartof | Applied Mathematics and Computation | |
| dc.rights | false | |
| dc.subject | Binet formula | Generalized Fibonacci sequence | Generalized Lucas sequence | Generating function | |
| dc.title | Two generalizations of Lucas sequence | |
| dc.type | Article | |
| dspace.entity.type | Scopus | |
| local.indexed.at | Scopus | |
| oaire.citation.volume | 245 | |
| person.affiliation.name | Kastamonu University | |
| person.identifier.scopus-author-id | 6504516338 | |
| relation.isPublicationOfScopus | 0392f159-2eca-4274-8ed1-cd24debaf5f6 | |
| relation.isPublicationOfScopus.latestForDiscovery | 0392f159-2eca-4274-8ed1-cd24debaf5f6 |
