Scopus:
Quadratic eigenparameter dependent discrete Sturm-Liouville equations with spectral singularities

dc.contributor.authorKoprubasi T.
dc.contributor.authorYokus N.
dc.date.accessioned2023-04-12T02:54:22Z
dc.date.available2023-04-12T02:54:22Z
dc.date.issued2014-10-01
dc.description.abstractLet us consider the boundary value problem (BVP) for the discrete Sturm-Liouville equationan-1yn-1+bnyn+anyn+1=λyn,n N,( γ0+γ1λ+γ2λ2)y1+(β0+ β1λ+β2λ2) y0=0,where (an) and (bn),nâ̂̂N are complex sequences, γi,βiâ̂̂ C,i=0,1,2, and λ is a eigenparameter. Discussing the point spectrum, we prove that the BVP (0.1) and (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, ifsupnâ̂̂ Nexp(εnδ)1-an+bn<â̂ for some ε>0 and 12≤δ≤1. © 2014 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.amc.2014.06.072
dc.identifier.issn00963003
dc.identifier.scopus2-s2.0-84904735566
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5859
dc.relation.ispartofApplied Mathematics and Computation
dc.rightsfalse
dc.subjectDiscrete equations | Eigenparameter | Eigenvalues | Spectral analysis | Spectral singularities
dc.titleQuadratic eigenparameter dependent discrete Sturm-Liouville equations with spectral singularities
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.volume244
person.affiliation.nameKastamonu University
person.affiliation.nameKaramanoğlu Mehmetbey Üniversitesi
person.identifier.scopus-author-id35307415400
person.identifier.scopus-author-id35146941200
relation.isPublicationOfScopus82e2dc64-d861-4fce-ac1b-e9e860fcdb03
relation.isPublicationOfScopus.latestForDiscovery82e2dc64-d861-4fce-ac1b-e9e860fcdb03

Files