Scopus: Quadratic eigenparameter dependent discrete Sturm-Liouville equations with spectral singularities
| dc.contributor.author | Koprubasi T. | |
| dc.contributor.author | Yokus N. | |
| dc.date.accessioned | 2023-04-12T02:54:22Z | |
| dc.date.available | 2023-04-12T02:54:22Z | |
| dc.date.issued | 2014-10-01 | |
| dc.description.abstract | Let us consider the boundary value problem (BVP) for the discrete Sturm-Liouville equationan-1yn-1+bnyn+anyn+1=λyn,n N,( γ0+γ1λ+γ2λ2)y1+(β0+ β1λ+β2λ2) y0=0,where (an) and (bn),nâ̂̂N are complex sequences, γi,βiâ̂̂ C,i=0,1,2, and λ is a eigenparameter. Discussing the point spectrum, we prove that the BVP (0.1) and (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, ifsupnâ̂̂ Nexp(εnδ)1-an+bn<â̂ for some ε>0 and 12≤δ≤1. © 2014 Elsevier Inc. All rights reserved. | |
| dc.identifier.doi | 10.1016/j.amc.2014.06.072 | |
| dc.identifier.issn | 00963003 | |
| dc.identifier.scopus | 2-s2.0-84904735566 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/5859 | |
| dc.relation.ispartof | Applied Mathematics and Computation | |
| dc.rights | false | |
| dc.subject | Discrete equations | Eigenparameter | Eigenvalues | Spectral analysis | Spectral singularities | |
| dc.title | Quadratic eigenparameter dependent discrete Sturm-Liouville equations with spectral singularities | |
| dc.type | Article | |
| dspace.entity.type | Scopus | |
| local.indexed.at | Scopus | |
| oaire.citation.volume | 244 | |
| person.affiliation.name | Kastamonu University | |
| person.affiliation.name | Karamanoğlu Mehmetbey Üniversitesi | |
| person.identifier.scopus-author-id | 35307415400 | |
| person.identifier.scopus-author-id | 35146941200 | |
| relation.isPublicationOfScopus | 82e2dc64-d861-4fce-ac1b-e9e860fcdb03 | |
| relation.isPublicationOfScopus.latestForDiscovery | 82e2dc64-d861-4fce-ac1b-e9e860fcdb03 |
