Scopus:
Global Rigidity of 2D Linearly Constrained Frameworks

dc.contributor.authorGuler H.
dc.contributor.authorJackson B.
dc.contributor.authorNixon A.
dc.date.accessioned2023-04-12T00:41:12Z
dc.date.available2023-04-12T00:41:12Z
dc.date.issued2021-11-01
dc.description.abstractA linearly constrained framework in Rd is a point configuration together with a system of constraints that fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system. We show that a generic linearly constrained framework in R2 is globally rigid if and only if it is redundantly rigid and "balanced". For unbalanced generic frameworks, we determine the precise number of solutions to the constraint system whenever the rigidity matroid of the framework is connected. We obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in Rd.
dc.identifier.doi10.1093/imrn/rnaa157
dc.identifier.issn10737928
dc.identifier.scopus2-s2.0-85106387269
dc.identifier.urihttps://hdl.handle.net/20.500.12597/4334
dc.relation.ispartofInternational Mathematics Research Notices
dc.rightsfalse
dc.titleGlobal Rigidity of 2D Linearly Constrained Frameworks
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue22
oaire.citation.volume2021
person.affiliation.nameKastamonu University
person.affiliation.nameQueen Mary University of London
person.affiliation.nameDepartment of Mathematics and Statistics, Lancaster University
person.identifier.scopus-author-id57218265146
person.identifier.scopus-author-id7401722787
person.identifier.scopus-author-id55536949300
relation.isPublicationOfScopusfdff3a41-3b5b-40fa-9fa0-bb56e8b2809d
relation.isPublicationOfScopus.latestForDiscoveryfdff3a41-3b5b-40fa-9fa0-bb56e8b2809d

Files