Scopus:
Spectral analysis of discrete dirac equation with generalized eigenparameter in boundary condition

dc.contributor.authorKoprubasi T.
dc.contributor.authorMohapatra R.
dc.date.accessioned2023-04-12T01:58:11Z
dc.date.available2023-04-12T01:58:11Z
dc.date.issued2019-01-01
dc.description.abstractLet L denote the discrete Dirac operator generated in ℓ2 (N, C 2) by the non-selfadjoint difference operators of first order { an+1 y(2) +bn+1 n y(2) n + pn y(1) n = λy(1) n an−1 y(1) +bn−1 n y(1) n + qn y(2) n = λy(2) n, n ∈ N, with boundary condition (0.1) p∑ k=0 (y (2) 1γk + y(1) 0βk) λk = 0, (0.2) where (an), (bn), (pn) and (qn), n ∈ N are complex sequences, γi, βi ∈ C, i = 0, 1, 2, …, p and λ is a eigenparameter. We discuss the spectral properties of L and we investigate the properties of the spectrum and the principal vectors corresponding to the spectral singularities of L, if ∞∑ |n|(|1 − an | + |1 + bn | +∣ ∣ ∣pn ∣∣ ∣∣∣qn ∣∣∣) + < ∞n=1 holds.
dc.identifier.doi10.2298/FIL1918039K
dc.identifier.issn03545180
dc.identifier.scopus2-s2.0-85077901882
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5122
dc.relation.ispartofFilomat
dc.rightstrue
dc.subjectDiscrete dirac equations | Discrete spectrum | Eigenparameter | Principal functions | Spectral analysis | Spectral singularities
dc.titleSpectral analysis of discrete dirac equation with generalized eigenparameter in boundary condition
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue18
oaire.citation.volume33
person.affiliation.nameKastamonu University
person.affiliation.nameUniversity of Central Florida
person.identifier.scopus-author-id35307415400
person.identifier.scopus-author-id7005993447
relation.isPublicationOfScopusfca7d840-0b2f-4f60-8524-824f7b4a1a47
relation.isPublicationOfScopus.latestForDiscoveryfca7d840-0b2f-4f60-8524-824f7b4a1a47

Files