Scopus:
Exact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution

dc.contributor.authorRaza N.
dc.contributor.authorSial S.
dc.contributor.authorKaplan M.
dc.date.accessioned2023-04-12T02:15:03Z
dc.date.available2023-04-12T02:15:03Z
dc.date.issued2018-03-01
dc.description.abstractThe term soliton has been used for a pulse like nonlinear wave (solitary wave) which leaves an interaction with unaltered shape and speed. To date, no less than seven particular wave frameworks or systems have been found to show such solutions. This speaks to an extensive variety of utilizations in applied science. The Exp(−ϕ(ξ))-expansion technique is utilized to find generalized solitary solutions and intermittent or periodic solutions for nonlinear evolution equations emerging in mathematical physics with the use of the enhanced time conformable equation. The technique is direct and succinct, and its applications are promising for other nonlinear mathematical physics.
dc.identifier.doi10.1016/j.ijleo.2017.11.107
dc.identifier.issn00304026
dc.identifier.scopus2-s2.0-85036621445
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5325
dc.relation.ispartofOptik
dc.rightsfalse
dc.subjectConformable fractional derivative | Exp(−ϕ(ξ)) methods | Nonlinear waves | Solitons solution
dc.titleExact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.volume156
person.affiliation.nameUniversity of the Punjab
person.affiliation.nameLahore University of Management Sciences
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id25932481300
person.identifier.scopus-author-id8558726300
person.identifier.scopus-author-id56368056100
relation.isPublicationOfScopus0e443dcd-a3fc-4f3f-8ad1-a3c23b3a4f02
relation.isPublicationOfScopus.latestForDiscovery0e443dcd-a3fc-4f3f-8ad1-a3c23b3a4f02

Files