Scopus:
Classification of regional ionospheric disturbance based on machine learning techniques

dc.contributor.authorTerzi M.B.
dc.contributor.authorArikan O.
dc.contributor.authorKaratay S.
dc.contributor.authorArikan F.
dc.contributor.authorGulyaeva T.
dc.date.accessioned2023-04-12T02:35:43Z
dc.date.available2023-04-12T02:35:43Z
dc.date.issued2016-08-01
dc.description.abstractIn this study, Total Electron Content (TEC) estimated from GPS receivers is used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. For the automated classification of regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. Performance of developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing developed classification technique to Global Ionospheric Map (GIM) TEC data, which is provided by the NASA Jet Propulsion Laboratory (JPL), it is shown that SVM can be a suitable learning method to detect anomalies in TEC variations.
dc.identifier.isbn9789292213053
dc.identifier.issn03796566
dc.identifier.scopus2-s2.0-84988528079
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5632
dc.relation.ispartofEuropean Space Agency, (Special Publication) ESA SP
dc.rightsfalse
dc.subjectIonosphere | Kernel functions | Space weather | Support vector machines (SVM)
dc.titleClassification of regional ionospheric disturbance based on machine learning techniques
dc.typeConference Paper
dspace.entity.typeScopus
oaire.citation.volumeSP-740
person.affiliation.nameBilkent Üniversitesi
person.affiliation.nameBilkent Üniversitesi
person.affiliation.nameKastamonu University
person.affiliation.nameHacettepe Üniversitesi
person.affiliation.namePushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences
person.identifier.scopus-author-id56529210600
person.identifier.scopus-author-id7004472891
person.identifier.scopus-author-id35102434600
person.identifier.scopus-author-id6603901653
person.identifier.scopus-author-id35617010100

Files