Scopus:
On hyperbolic lucas quaternions

dc.contributor.authorDasdemir A.
dc.date.accessioned2023-04-12T01:26:02Z
dc.date.available2023-04-12T01:26:02Z
dc.date.issued2020-04-01
dc.description.abstractMany quaternions such as Fibonacci, Lucas, Pell and Jacob-sthal quaternions have been investigated in different forms before. Moreover, their fundamental identities have been presented. In this paper, we introduce new classes of quaternions associated with the symmetrical hyperbolic Lucas functions. In addition, we present the Binet's formulas, certain generating matrix representations and generating functions of these quaternions. In particular, we derive Cassini's formulas and d'Ocagne's identities.
dc.identifier.issn03817032
dc.identifier.scopus2-s2.0-85096231694
dc.identifier.urihttps://hdl.handle.net/20.500.12597/4765
dc.relation.ispartofArs Combinatoria
dc.rightsfalse
dc.subjectBinet's formula | Cassini's identity | Generating matrices | Hyperbolic lucas functions | Quaternions
dc.titleOn hyperbolic lucas quaternions
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.volume150
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id54383209900

Files