Scopus:
Metrisor: A novel diagnostic method for metritis detection in cattle based on machine learning and sensors

dc.contributor.authorRisvanli, A.
dc.contributor.authorTanyeri, B.
dc.contributor.authorYildirim, G.
dc.contributor.authorTatar, Y.
dc.contributor.authorGedikpinar, M.
dc.contributor.authorKalender, H.
dc.contributor.authorSafak, T.
dc.contributor.authorYuksel, B.
dc.contributor.authorKaragulle, B.
dc.contributor.authorYilmaz, O.
dc.contributor.authorKilinc, M.A.
dc.date.accessioned2024-05-13T06:36:54Z
dc.date.available2024-05-13T06:36:54Z
dc.date.issued2024
dc.description.abstractThe Metrisor device has been developed using gas sensors for rapid, highly accurate and effective diagnosis of metritis. 513 cattle uteri were collected from abattoirs and swabs were taken for microbiological testing. The Metrisor device was used to measure intrauterine gases. The results showed a bacterial growth rate of 75.75 % in uteri with clinical metritis. In uteri positive for clinical metritis, the most commonly isolated and identified bacteria were Trueperella pyogenes, Fusobacterium necrophorum and Escherichia coli. Measurements taken with Metrisor to determine the presence of metritis in the uterus yielded the most successful results in evaluations of relevant machine learning algorithms. The ICO (Iterative Classifier Optimizer) algorithm achieved 71.22 % accuracy, 64.40 % precision and 71.20 % recall. Experiments were conducted to examine bacterial growth in the uterus and the random forest algorithm produced the most successful results with accuracy, precision and recall values of 78.16 %, 75.30 % and 78.20 % respectively. ICO also showed high performance in experiments to determine bacterial growth in metritis-positive uteri, with accuracy, precision and recall values of 78.97 %, 77.20 % and 79.00 %, respectively. In conclusion, the Metrisor device demonstrated high accuracy in detecting metritis and bacterial growth in uteri and could identify bacteria such as E. coli, S. aureus, coagulase-negative staphylococci, T. pyogenes, Bacillus spp., Clostridium spp. and F. necrophorum with rates up to 80 %. It provides a reliable, rapid and effective means of detecting metritis in animals in the field without the need for laboratory facilities.
dc.identifier10.1016/j.theriogenology.2024.05.002
dc.identifier.doi10.1016/j.theriogenology.2024.05.002
dc.identifier.endpage121
dc.identifier.issn0093691X
dc.identifier.scopus2-s2.0-85192070223
dc.identifier.startpage115
dc.identifier.urihttps://hdl.handle.net/20.500.12597/33140
dc.identifier.volume223
dc.language.isoen
dc.publisherElsevier Inc.
dc.relation.ispartofTheriogenology
dc.relation.ispartofseriesTheriogenology
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCow, Machine learning, Metrisor, Metritis, Sensor
dc.titleMetrisor: A novel diagnostic method for metritis detection in cattle based on machine learning and sensors
dc.typearticle
dspace.entity.typeScopus
oaire.citation.volume223
person.affiliation.nameKyrgyz-Turkish Manas University
person.affiliation.nameFirat Üniversitesi
person.affiliation.nameFirat Üniversitesi
person.affiliation.nameFirat Üniversitesi
person.affiliation.nameFirat Üniversitesi
person.affiliation.nameFirat Üniversitesi
person.affiliation.nameKastamonu University
person.affiliation.nameFirat Üniversitesi
person.affiliation.nameFirat Üniversitesi
person.affiliation.nameSiirt Üniversitesi
person.affiliation.nameUniversity of Bingöl
person.identifier.orcid0000-0001-5653-0025
person.identifier.scopus-author-id6602416499
person.identifier.scopus-author-id57188858903
person.identifier.scopus-author-id56229882300
person.identifier.scopus-author-id6505916857
person.identifier.scopus-author-id34974022400
person.identifier.scopus-author-id55694937100
person.identifier.scopus-author-id57209771954
person.identifier.scopus-author-id57226169654
person.identifier.scopus-author-id55681667800
person.identifier.scopus-author-id57209128726
person.identifier.scopus-author-id57447855300

Files