Scopus:
Discrete impulsive Sturm–Liouville equation with hyperbolic eigenparameter

dc.contributor.authorKöprübaşi T.
dc.contributor.authorKüçükevcİlİoğlu Y.A.
dc.date.accessioned2023-04-11T22:43:35Z
dc.date.accessioned2023-04-12T00:29:13Z
dc.date.available2023-04-11T22:43:35Z
dc.date.available2023-04-12T00:29:13Z
dc.date.issued2022-01-01
dc.description.abstractLet L denote the selfadjoint diference operator of second order with boundary and impulsive conditions generated in ℓ2 (N) by (equation Presented)where {an}n&i, {bn}„6N are real sequences and A, v are respectively forward and backward operators. In this paper, the spectral properties of L such as the resolvent operator, the spectrum, the eigenvalues, the scattering function and their properties are investigated. Moreover, an example about the scattering function and the existence of eigenvalues is given in the special cases, if(Equation Presented)
dc.identifier.doi10.3906/mat-2104-97
dc.identifier.issn13000098
dc.identifier.scopus2-s2.0-85126127714
dc.identifier.urihttps://hdl.handle.net/20.500.12597/3874
dc.relation.ispartofTurkish Journal of Mathematics
dc.rightsfalse
dc.subjectDiscrete equations | Eigenvalues | Hyperbolic eigenparameter | Impulsive condition | Resolvent operator | Scattering function | Spectral analysis
dc.titleDiscrete impulsive Sturm–Liouville equation with hyperbolic eigenparameter
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issueSpecial Issue
oaire.citation.volume46
person.affiliation.nameKastamonu University
person.affiliation.nameAnkara Üniversitesi
person.identifier.orcid0000-0003-1551-1527
person.identifier.orcid0000-0002-5550-3073
person.identifier.scopus-author-id35307415400
person.identifier.scopus-author-id57483509000
relation.isPublicationOfScopusd5c3c0dd-f085-4fbd-868f-8c692d1bc766
relation.isPublicationOfScopus.latestForDiscoveryd5c3c0dd-f085-4fbd-868f-8c692d1bc766

Files