Scopus:
Stem taper estimations with artificial neural networks for mixed oriental beech and kazdaği fir stands in karabük region, Turkey

No Thumbnail Available

Journal Title

Journal ISSN

Volume Title

Type

Article

Access

true

Publication Status

Metrikler

Search on Google Scholar

Total Views

0

Total Downloads

0

Abstract

Development of artifi cial neural network (ANN) models to estimate stem tapers of indi- vidual trees in mixed Fagus orientalis and Abies nordmanniana subsp. Equi-trojani stands distributed in Karabük region of Turkey, and comparison of the ANN models with stem taper equations were aimed in this study. The measurements were obtained from 516 sample trees (238 for Oriental beech and 278 for Kazdağı fir) in mixed stands of Karabük region. The measurements included diameter at breast height, tree height, diameter at stump height, and diameters at intervals of 1 m along the stem. In total, 45 ANN models and four stem taper equations were developed. Estimation performances of ANN models and stem taper equations were compared using relative rankings according to seven goodness-of-fi t criteria. As a result, the ANN models were more successful in estimation of stem taper for both tree species. The most successful ANN model structures were (i) the model us- ing logistic function in hidden layer with 10 nodes and hyperbolic tangent function in out- put layer for Fagus orientalis, and (ii) the model using logistic function in hidden layer with 10 nodes and linear function in output layer for Abies nordmanniana subsp. equi-trojani.

Date

2018-10-01

Publisher

Description

Keywords

Machine learning | Network architecture | Stem profile | Transfer function

Citation