Scopus:
Triphenylphosphine-functionalized hyper-crosslinked polymers for efficient hydrogen generation via sodium borohydride methanolysis

dc.contributor.authorGokkus, K.
dc.contributor.authorOzbal, A.
dc.contributor.authorGür, M.
dc.contributor.authorAkalin, S.A.
dc.contributor.authorSebli, H.
dc.contributor.authorBütün, V.
dc.date.accessioned2025-09-25T05:50:49Z
dc.date.issued2025
dc.description.abstractFour novel hyper-crosslinked polymers (HCP-1 to HCP-4) were synthesized via Friedel–Crafts alkylation using 4,4′-bis(chloromethyl)-1,1′-biphenyl as the crosslinker and various aromatic monomers including triphenylphosphine (TPP). These polymers were designed as metal-free catalysts for hydrogen generation via sodium borohydride methanolysis. Comprehensive characterization using FT-IR, XPS, BET, TGA, SEM, and zeta potential analyses confirmed that the materials possess thermally stable, porous networks with irregular morphologies and distinct surface charges. Under practical conditions, HCP-3 exhibited the highest catalytic activity with a hydrogen generation rate of 9857 mL H2 min−1 g−1 at 303.15 K and the lowest activation energy (Ea = 32.0 kJ mol−1). At elevated temperature (333.15 K), HCP-2 achieved the highest activity (37,200 mL H2 min−1 g−1), reflecting the strong influence of temperature on performance trends. Despite not having the highest surface area or pore volume, the superior activity of HCP-3 at 303.15 K highlights the decisive roles of microporous architecture, electrostatic surface characteristics, and heteroatom functionality. Zeta potential analysis revealed significant reductions in surface charge after reaction, particularly for HCP-3, suggesting strong electrostatic interactions with BH₄− ions. XPS data further confirmed the successful incorporation of TPP and heteroaromatic units, correlating with enhanced catalytic efficiency. Overall, the findings underscore a surface-mediated mechanism where both charge-assisted hydride attraction and structural topology govern hydrogen evolution. The metal-free and reusable nature of these catalysts supports their potential in sustainable hydrogen technologies.
dc.identifier10.1016/j.reactfunctpolym.2025.106480
dc.identifier.doi10.1016/j.reactfunctpolym.2025.106480
dc.identifier.issn13815148
dc.identifier.scopus2-s2.0-105015732175
dc.identifier.urihttps://hdl.handle.net/20.500.12597/34992
dc.identifier.volume217
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofReactive and Functional Polymers
dc.relation.ispartofseriesReactive and Functional Polymers
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHydrogen generation | Hyper-crosslinked polymers | NaBH4 methanolysis | Triphenylphosphine | Zeta potential
dc.titleTriphenylphosphine-functionalized hyper-crosslinked polymers for efficient hydrogen generation via sodium borohydride methanolysis
dc.typearticle
dspace.entity.typeScopus
oaire.citation.volume217
person.affiliation.nameKastamonu University
person.affiliation.nameEskişehir Osmangazi Üniversitesi
person.affiliation.nameKastamonu University
person.affiliation.nameDokuz Eylül Üniversitesi
person.affiliation.nameKastamonu University
person.affiliation.nameEskişehir Osmangazi Üniversitesi
person.identifier.scopus-author-id23088335300
person.identifier.scopus-author-id57195531142
person.identifier.scopus-author-id55797807700
person.identifier.scopus-author-id56487358200
person.identifier.scopus-author-id60095955500
person.identifier.scopus-author-id6603765801

Files