Scopus:
Machine learning assessment of illegal mining (Galamsey) impacts on forest vegetation: a case study of Wassa Amenfi East District, Ghana

dc.contributor.authorKwang, C.
dc.contributor.authorAfele, I.K.
dc.contributor.authorYeboah, E.
dc.contributor.authorSarfo, I.
dc.contributor.authorBatame, M.
dc.contributor.authorOkrah, A.
dc.contributor.authorShwe, M.M.
dc.contributor.authorSiaw, W.
dc.contributor.authorBoyetey, D.
dc.contributor.authorLarbi, R.O.
dc.contributor.authorMensah, A.O.K.N.
dc.contributor.authorEl Rhadiouini, C.
dc.contributor.authorJaffry, A.H.
dc.contributor.authorSiddique, F.
dc.contributor.authorAftab, R.
dc.contributor.authorIsinkaralar, O.
dc.date.accessioned2025-04-27T14:33:25Z
dc.date.issued2025
dc.description.abstractThis study addresses the persistent land management challenge of galamsey (illegal mining) in Wassa Amenfi East by exploring the impact of these activities on vegetation through advanced machine learning techniques. A comparative analysis was conducted using four machine learning algorithms Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Maximum Likelihood Classification (MLC) to assess their effectiveness in detecting and analyzing vegetation changes due to galamsey operations. The results highlight the Random Forest (RF) algorithm as the most effective, with overall accuracy scores of 88% for 2015 and 87% for 2023, and Kappa Coefficient values of 0.84 and 0.82, respectively, demonstrating its consistent superiority over the other methods. Findings of the study reveal significant vegetation and forest cover loss due to galamsey, driven by poverty, unemployment, poor policies, livelihood pursuits, and quick financial gains by traditional authorities. This study stresses the need for targeted interventions to mitigate the environmental impact of galamsey and suggests the adoption of advanced machine learning techniques for more accurate and effective land management strategies.
dc.identifier10.1007/s12145-025-01860-7
dc.identifier.doi10.1007/s12145-025-01860-7
dc.identifier.issn18650473
dc.identifier.issue2
dc.identifier.scopus2-s2.0-105001485921
dc.identifier.urihttps://hdl.handle.net/20.500.12597/34282
dc.identifier.volume18
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofEarth Science Informatics
dc.relation.ispartofseriesEarth Science Informatics
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtificial neural network | Galamsey | Machine learning techniques | Maximum likelihood classification | Random | Support vector machine
dc.titleMachine learning assessment of illegal mining (Galamsey) impacts on forest vegetation: a case study of Wassa Amenfi East District, Ghana
dc.typearticle
dspace.entity.typeScopus
oaire.citation.issue2
oaire.citation.volume18
person.affiliation.nameUniversity of Ghana
person.affiliation.nameUniversity of Ghana
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameHenan University
person.affiliation.nameUniversity of Georgia
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameUniversity of Mines and Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameNanjing University of Information Science & Technology
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id57289837100
person.identifier.scopus-author-id58839038300
person.identifier.scopus-author-id57223634461
person.identifier.scopus-author-id57213592089
person.identifier.scopus-author-id57820266000
person.identifier.scopus-author-id58750917600
person.identifier.scopus-author-id59717276900
person.identifier.scopus-author-id59717434800
person.identifier.scopus-author-id59716981600
person.identifier.scopus-author-id59716530600
person.identifier.scopus-author-id59717130500
person.identifier.scopus-author-id59032924700
person.identifier.scopus-author-id57446793400
person.identifier.scopus-author-id59503889600
person.identifier.scopus-author-id59717277000
person.identifier.scopus-author-id57878476400

Files