Scopus:
3-Parameter Generalized Quaternions

dc.contributor.authorŞentürk T.D.
dc.contributor.authorÜnal Z.
dc.date.accessioned2023-04-11T22:23:33Z
dc.date.accessioned2023-04-12T00:30:29Z
dc.date.available2023-04-11T22:23:33Z
dc.date.available2023-04-12T00:30:29Z
dc.date.issued2022-09-01
dc.description.abstractIn this article, we give a general form of the quaternions algebra depending on 3-parameters. We define 3-parameter generalized quaternions (3PGQs) and study various properties and applications. Firstly we present the definiton, the multiplication table and algebraic properties of 3PGQs. We give matrix representation and Hamilton operators for 3PGQs. We derive the polar represenation, De Moivre’s and Euler’s formulas with the matrix representations for 3PGQs. Additionally, we derive relations between the powers of the matrices associated with 3PGQs. Finally, Lie groups and Lie algebras are studied and their matrix representations are given. Also the Lie multiplication and the Killing bilinear form are given.
dc.identifier.doi10.1007/s40315-022-00451-7
dc.identifier.issn16179447
dc.identifier.scopus2-s2.0-85130743426
dc.identifier.urihttps://hdl.handle.net/20.500.12597/4139
dc.relation.ispartofComputational Methods and Function Theory
dc.rightsfalse
dc.subject3-Parameter generalized quaternion | De Moivre’s formula | Euler formula | Lie algebra | Matrix representation of quaternions
dc.title3-Parameter Generalized Quaternions
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.issue3
oaire.citation.volume22
person.affiliation.nameGöl Anatolian Highschool
person.affiliation.nameKastamonu University
person.identifier.scopus-author-id57211120456
person.identifier.scopus-author-id56675999300
relation.isPublicationOfScopus2476a79d-5881-4d0e-b6ef-1e9bb5779bdf
relation.isPublicationOfScopus.latestForDiscovery2476a79d-5881-4d0e-b6ef-1e9bb5779bdf

Files