Scopus:
Stability criteria for volterra type linear nabla fractional difference equations

dc.contributor.authorGevgeşoğlu M.
dc.contributor.authorBolat Y.
dc.date.accessioned2023-04-11T22:17:38Z
dc.date.accessioned2023-04-12T00:29:59Z
dc.date.available2023-04-11T22:17:38Z
dc.date.available2023-04-12T00:29:59Z
dc.date.issued2022-12-01
dc.description.abstractIn this study, we give some necessary and sufficient conditions on the stability for Volterra type linear nabla fractional difference equations of the form ∇-1vx(t)=λx(t),t∈ N1, with initial condition ∇-1v-1x(t)|t=0=x0.For this, first of all we show that the above equation is a convolution-type Volterra equation, then give the stability conditions by using the stability analysis methods of the convolution type Volterra equations. Also we give some examples to illustrate our theoretic results.
dc.identifier.doi10.1007/s12190-021-01696-6
dc.identifier.issn15985865
dc.identifier.scopus2-s2.0-85123207094
dc.identifier.urihttps://hdl.handle.net/20.500.12597/3993
dc.relation.ispartofJournal of Applied Mathematics and Computing
dc.rightsfalse
dc.subjectNabla fractional difference equations | Stability | Volterra difference equations
dc.titleStability criteria for volterra type linear nabla fractional difference equations
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.issue6
oaire.citation.volume68
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.identifier.orcid0000-0001-5215-427X
person.identifier.scopus-author-id57217047086
person.identifier.scopus-author-id6602530755
relation.isPublicationOfScopus853b8286-178a-4993-b5bb-1cb9dd3366cb
relation.isPublicationOfScopus.latestForDiscovery853b8286-178a-4993-b5bb-1cb9dd3366cb

Files