Scopus: Stability criteria for volterra type linear nabla fractional difference equations
dc.contributor.author | Gevgeşoğlu M. | |
dc.contributor.author | Bolat Y. | |
dc.date.accessioned | 2023-04-11T22:17:38Z | |
dc.date.accessioned | 2023-04-12T00:29:59Z | |
dc.date.available | 2023-04-11T22:17:38Z | |
dc.date.available | 2023-04-12T00:29:59Z | |
dc.date.issued | 2022-12-01 | |
dc.description.abstract | In this study, we give some necessary and sufficient conditions on the stability for Volterra type linear nabla fractional difference equations of the form ∇-1vx(t)=λx(t),t∈ N1, with initial condition ∇-1v-1x(t)|t=0=x0.For this, first of all we show that the above equation is a convolution-type Volterra equation, then give the stability conditions by using the stability analysis methods of the convolution type Volterra equations. Also we give some examples to illustrate our theoretic results. | |
dc.identifier.doi | 10.1007/s12190-021-01696-6 | |
dc.identifier.issn | 15985865 | |
dc.identifier.scopus | 2-s2.0-85123207094 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12597/3993 | |
dc.relation.ispartof | Journal of Applied Mathematics and Computing | |
dc.rights | false | |
dc.subject | Nabla fractional difference equations | Stability | Volterra difference equations | |
dc.title | Stability criteria for volterra type linear nabla fractional difference equations | |
dc.type | Article | |
dspace.entity.type | Scopus | |
oaire.citation.issue | 6 | |
oaire.citation.volume | 68 | |
person.affiliation.name | Kastamonu University | |
person.affiliation.name | Kastamonu University | |
person.identifier.orcid | 0000-0001-5215-427X | |
person.identifier.scopus-author-id | 57217047086 | |
person.identifier.scopus-author-id | 6602530755 | |
relation.isPublicationOfScopus | 853b8286-178a-4993-b5bb-1cb9dd3366cb | |
relation.isPublicationOfScopus.latestForDiscovery | 853b8286-178a-4993-b5bb-1cb9dd3366cb |