Scopus:
Spectrum and the Jost Solution of Discrete Impulsive Klein-Gordon Equation with Hyperbolic Eigenparameter

dc.contributor.authorKoprubasi T.
dc.date.accessioned2023-04-11T22:37:04Z
dc.date.accessioned2023-04-12T00:28:45Z
dc.date.available2023-04-11T22:37:04Z
dc.date.available2023-04-12T00:28:45Z
dc.date.issued2022-01-01
dc.description.abstractLet ʟ denote the quadratic pencil of difference operator with boundary and impulsive conditions generated in ℓ2(ℕ) by (Formula Presented) are real sequences, λ = 2 cosh (Formula Presented) is a hyperbolic eigenparameter and △, ▽ are respectively forward and backward operators. In this paper, the spectral properties of ʟ such as the spectrum, the eigenvalues, the scattering function and their properties are investigated. Moreover, an example about the scattering function and the existence of eigenvalues is given in the special cases, if (Formula Presented).
dc.identifier.doi10.35378/gujs.881459
dc.identifier.scopus2-s2.0-85140066121
dc.identifier.urihttps://hdl.handle.net/20.500.12597/3763
dc.relation.ispartofGazi University Journal of Science
dc.rightstrue
dc.subjectHyperbolic parameter | Impulsive condition | Klein-Gordon equations | Scattering function | Spectral analysis
dc.titleSpectrum and the Jost Solution of Discrete Impulsive Klein-Gordon Equation with Hyperbolic Eigenparameter
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue4
oaire.citation.volume35
person.affiliation.nameKastamonu University
person.identifier.orcid0000-0003-1551-1527
person.identifier.scopus-author-id35307415400
relation.isPublicationOfScopus7c2bd5a6-524a-48e6-a4c9-716e9e6bb3bb
relation.isPublicationOfScopus.latestForDiscovery7c2bd5a6-524a-48e6-a4c9-716e9e6bb3bb

Files