Scopus:
Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation

dc.contributor.authorKaplan M.
dc.contributor.authorOzer M.
dc.date.accessioned2023-04-12T02:23:12Z
dc.date.available2023-04-12T02:23:12Z
dc.date.issued2018-01-01
dc.description.abstractThe mathematical modelling of physical systems is generally expressed by nonlinear evolution equations. Therefore, it is critical to obtain solutions to these equations. We have employed the Hirota’s method to derive multiple soliton solutions to (2+1)-dimensional nonlinear evolution equation. Then we have studied the transformed rational function method to construct different types of analytical solutions to the nonlinear evolution equations. This algorithm provides a more convenient and systematical handling of the solution process of nonlinear evolution equations, unifying the homogeneous balance method, the mapping method, the tanh-function method, the F-expansion method and the exp-function method.
dc.identifier.doi10.1007/s11082-017-1270-6
dc.identifier.issn03068919
dc.identifier.scopus2-s2.0-85038960785
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5437
dc.relation.ispartofOptical and Quantum Electronics
dc.rightsfalse
dc.subjectExact solutions | Multiple-soliton solutions | Simplified Hirota’s method | Transformed rational function method
dc.titleMultiple-soliton solutions and analytical solutions to a nonlinear evolution equation
dc.typeArticle
dspace.entity.typeScopus
oaire.citation.issue1
oaire.citation.volume50
person.affiliation.nameKastamonu University
person.affiliation.nameEskişehir Osmangazi Üniversitesi
person.identifier.orcid0000-0001-5700-9127
person.identifier.scopus-author-id56368056100
person.identifier.scopus-author-id57209762666
relation.isPublicationOfScopus6f6c87b7-5ebf-47d8-abc4-841bbca77132
relation.isPublicationOfScopus.latestForDiscovery6f6c87b7-5ebf-47d8-abc4-841bbca77132

Files