Scopus:
Some Properties of Dual Fibonacci and Dual Lucas Octonions

dc.contributor.authorÜnal Z.
dc.contributor.authorTokeşer Ü.
dc.contributor.authorBilgici G.
dc.date.accessioned2023-04-12T02:28:44Z
dc.date.available2023-04-12T02:28:44Z
dc.date.issued2017-06-01
dc.description.abstractHalici (Adv Appl Clifford Algebr 25(4):905–914, 2015) defined dual Fibonacci and dual Lucas octonions by the relations Q~ n= Qn+ εQn+1 and P~ n= Pn+ εPn+1 for every integer n where Qn and Pn are the Fibonacci and Lucas octonions respectively, and ε is the dual unit. The aim of this paper is to investigate properties of dual Fibonacci and dual Lucas octonions. After obtaining the Binet formulas for the sequences {Q~n}n=0∞ and {P~n}n=0∞, we derive some identities for these sequences such as Catalan’s, Cassini’s and d’Ocagne’s identities.
dc.identifier.doi10.1007/s00006-016-0724-4
dc.identifier.issn01887009
dc.identifier.scopus2-s2.0-84986270687
dc.identifier.urihttps://hdl.handle.net/20.500.12597/5522
dc.relation.ispartofAdvances in Applied Clifford Algebras
dc.rightsfalse
dc.subjectDual Fibonacci octonion | Dual Lucas octonion | Fibonacci sequence | Lucas sequence
dc.titleSome Properties of Dual Fibonacci and Dual Lucas Octonions
dc.typeArticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue2
oaire.citation.volume27
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.affiliation.nameKastamonu University
person.identifier.orcid0000-0003-2445-1028
person.identifier.scopus-author-id56675999300
person.identifier.scopus-author-id57191078121
person.identifier.scopus-author-id6504516338
relation.isPublicationOfScopuse7ef5430-b1d9-41c6-a065-9a0cd598e424
relation.isPublicationOfScopus.latestForDiscoverye7ef5430-b1d9-41c6-a065-9a0cd598e424

Files