Scopus:
Robust stacking-based ensemble learning model for forest fire detection

dc.contributor.authorAkyol K.
dc.date.accessioned2023-10-27T07:42:31Z
dc.date.available2023-10-27T07:42:31Z
dc.date.issued2023
dc.description.abstractForests reduce soil erosion and prevent drought, wind, and other natural disasters. Forest fres, which threaten millions of hectares of forest area yearly, destroy these precious resources. This study aims to design a deep learning model with high accuracy to intervene in forest fres at an early stage. A stacked-based ensemble learning model is proposed for fre detection from forest landscape images in this context. This model ofers high test accuracies of 97.37%, 95.79%, and 95.79% with hold-out validation, fvefold cross-validation, and tenfold cross-validation experiments, respectively. The artifcial intelligence model developed in this study could be used in real-time systems run on unmanned aerial vehicles to prevent potential disasters in forest areas.
dc.identifier10.1007/s13762-023-05194-z
dc.identifier.doiInstitute for Ionics
dc.identifier.endpage13258
dc.identifier.issn17351472
dc.identifier.issue12
dc.identifier.scopus2-s2.0-85171482858
dc.identifier.startpage13245
dc.identifier.urihttps://hdl.handle.net/20.500.12597/17821
dc.identifier.volume20
dc.language.isoen
dc.publisherInstitute for Ionics
dc.relation.ispartofInternational Journal of Environmental Science and Technology
dc.relation.ispartofseriesInternational Journal of Environmental Science and Technology
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBi-directional long short-term memory; Computer vision; Deep learning; Forest fire; Stacking ensemble model
dc.titleRobust stacking-based ensemble learning model for forest fire detection
dc.typearticle
dspace.entity.typeScopus
local.indexed.atScopus
oaire.citation.issue12
oaire.citation.volume20
person.affiliation.nameKastamonu University
person.identifier.orcid0000-0002-2272-5243
person.identifier.scopus-author-id57188723065

Files