Pubmed:
CRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS-1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle.

dc.contributor.authorBrant, Eleanor J
dc.contributor.authorBaloglu, Mehmet Cengiz
dc.contributor.authorParikh, Aalap
dc.contributor.authorAltpeter, Fredy
dc.date.accessioned2023-04-06T23:43:16Z
dc.date.available2023-04-06T23:43:16Z
dc.date.issued2021-11-01T00:00:00Z
dc.description.abstractSorghum (Sorghum bicolor L. Moench) is one of the world's most cultivated cereal crops. Biotechnology approaches have great potential to complement traditional crop improvement. Earlier studies in rice and maize revealed that LIGULELESS-1 (LG1) is responsible for formation of the ligule and auricle, which determine the leaf inclination angle. However, generation and analysis of lg1 mutants in sorghum has so far not been described. Here, we describe CRISPR/Cas9 mediated targeted mutagenesis of LG1 in sorghum and phenotypic changes in mono- and bi-allelic lg1 mutants. Genome editing reagents were co-delivered to sorghum (var. Tx430) with the nptII selectable marker via particle bombardment of immature embryos followed by regeneration of transgenic plants. Sanger sequencing confirmed a single nucleotide insertion in the sgRNA LG1 target site. Monoallelic edited plantlets displayed more upright leaves in tissue culture and after transfer to soil when compared to wild type. T1 progeny plants with biallelic lg1 mutation lacked ligules entirely and displayed a more severe reduction in leaf inclination angle than monoallelic mutants. Transgene-free lg1 mutants devoid of the genome editing vector were also recovered in the segregating T1 generation. Targeted mutagenesis of LG1 provides a rapidly scorable phenotype in tissue culture and will facilitate optimization of genome editing protocols. Altering leaf inclination angle also has the potential to elevate yield in high-density plantings.
dc.identifier.doi10.1002/biot.202100237
dc.identifier.issn1860-7314
dc.identifier.pubmed34343415
dc.identifier.urihttps://hdl.handle.net/20.500.12597/3379
dc.language.isoen
dc.relation.ispartofBiotechnology journal
dc.subjectCRISPR-Cas9
dc.subjectbiolistic
dc.subjectgenome editing
dc.subjectleaf inclination angle
dc.subjectsorghum
dc.subjecttargeted mutagenesis
dc.subjecttransgenic
dc.titleCRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS-1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle.
dc.typeJournal Article
dspace.entity.typePubmed
oaire.citation.issue11
oaire.citation.volume16
relation.isPublicationOfPubmedb6af9681-9042-4a6b-b194-21975c3c41e5
relation.isPublicationOfPubmed.latestForDiscoveryb6af9681-9042-4a6b-b194-21975c3c41e5

Files