Pubmed:
Quantum chemical and spectroscopic (FT-IR and FT-Raman) investigations of 3-methyl-3h-imidazole-4-carbaldehyde.

No Thumbnail Available

Journal Title

Journal ISSN

Volume Title

Type

Journal Article

Access

Publication Status

Metrikler

Search on Google Scholar

Total Views

0

Total Downloads

0

Abstract

FT-IR and FT-Raman spectra of 3-methyl-3h-imidazole-4-carbaldehyde (3M3HI4C) were recorded in the region 4000-400cm(-1) and 3500-50cm(-1), respectively. Optimized geometric parameters, conformational equilibria, normal mode frequencies, and corresponding vibrational assignments of 3M3HI4C were theoretically examined by quantum chemical methods for the first time. All vibrational frequencies were assigned in detail with the help of total energy distribution (TEDs). The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT/B3LYP method. The results showed that the B3LYP/6-311++G(d,p) method predicts vibrational frequencies and the structural parameters effectively. The most stable conformer of the title compound was determined. The total electron density and molecular electrostatic potential surfaces of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. The lower energy band was assigned to the HOMO→LUMO transition. Natural bond orbital analysis of title molecule has been performed to indicate the presence of intramolecular charge transfer. Energies, relative stabilities, and dipole moments of title molecule were also compared and analyzed in the gas phase and in solvents. Furthermore, solvent effects on the geometry and vibrational frequency of 3M3HI4C were studied theoretically at the DFT/B3LYP level in combination with the conductor polarizable continuum model (C-PCM).

Date

2014-12-10T00:00:00Z

Publisher

Description

Keywords

3-Methyl-3h-imidazole-4-carbaldehyde, DFT, FT-IR and FT-Raman, HOMO–LUMO energies, MESP (molecular electrostatic potential surfaces), Solvent effect

Citation