Yayın: Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
| dc.contributor.author | Bilgici Göksal | |
| dc.contributor.author | Şentürk Tuncay Deniz | |
| dc.date.accessioned | 2026-01-04T13:20:44Z | |
| dc.date.issued | 2019-07-18 | |
| dc.description.abstract | Abstract In this paper, we obtain a closed form for <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${F_{\sum\nolimits_{i = 1}^k {} }}$ , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${P_{\sum\nolimits_{i = 1}^k {} }}$ and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${F_{\sum\nolimits_{i = 1}^n {} }}$ , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${P_{\sum\nolimits_{i = 1}^n {} }}$ and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${J_{\sum\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n. | |
| dc.description.uri | https://doi.org/10.2478/amsil-2019-0005 | |
| dc.description.uri | https://www.sciendo.com/pdf/10.2478/amsil-2019-0005 | |
| dc.description.uri | https://doaj.org/article/d525303f3fa0420594152db006e72144 | |
| dc.description.uri | https://dx.doi.org/10.2478/amsil-2019-0005 | |
| dc.identifier.doi | 10.2478/amsil-2019-0005 | |
| dc.identifier.eissn | 2391-4238 | |
| dc.identifier.endpage | 65 | |
| dc.identifier.issn | 0860-2107 | |
| dc.identifier.openaire | doi_dedup___::daa8254aa243618d75167a676215eb39 | |
| dc.identifier.orcid | 0000-0001-9964-5578 | |
| dc.identifier.orcid | 0000-0002-5247-5097 | |
| dc.identifier.scopus | 2-s2.0-85095690560 | |
| dc.identifier.startpage | 55 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/37430 | |
| dc.identifier.volume | 33 | |
| dc.identifier.wos | 000644474000004 | |
| dc.language.iso | eng | |
| dc.publisher | Walter de Gruyter GmbH | |
| dc.relation.ispartof | Annales Mathematicae Silesianae | |
| dc.rights | OPEN | |
| dc.subject | Jacobsthal numbers | |
| dc.subject | QA1-939 | |
| dc.subject | B39 | |
| dc.subject | K31 | |
| dc.subject | Y55 | |
| dc.subject | Fibonacci numbers | |
| dc.subject | Pell numbers | |
| dc.subject | Mathematics | |
| dc.title | Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Bilgici Göksal","name":null,"surname":null,"rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-9964-5578"},"provenance":null}},{"fullName":"Şentürk Tuncay Deniz","name":null,"surname":null,"rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-5247-5097"},"provenance":null}}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Jacobsthal numbers"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"11B39"},"provenance":null},{"subject":{"scheme":"keyword","value":"11K31"},"provenance":null},{"subject":{"scheme":"keyword","value":"11Y55"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci numbers"},"provenance":null},{"subject":{"scheme":"keyword","value":"Pell numbers"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title> <jats:p>In this paper, we obtain a closed form for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_amsil-2019-0005_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:tex-math>${F_{\\sum\\nolimits_{i = 1}^k {} }}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_amsil-2019-0005_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:tex-math>${P_{\\sum\\nolimits_{i = 1}^k {} }}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_amsil-2019-0005_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:tex-math>${J_{\\sum\\nolimits_{i = 1}^k {} }}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for some positive integers <jats:italic>k</jats:italic> where <jats:italic>Fr</jats:italic>, <jats:italic>Pr</jats:italic> and <jats:italic>Jr</jats:italic> are the <jats:italic>r</jats:italic>th Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_amsil-2019-0005_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:tex-math>${F_{\\sum\\nolimits_{i = 1}^n {} }}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_amsil-2019-0005_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:tex-math>${P_{\\sum\\nolimits_{i = 1}^n {} }}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_amsil-2019-0005_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:tex-math>${J_{\\sum\\nolimits_{i = 1}^n {} }}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>for any arbitrary positive integer <jats:italic>n</jats:italic>.</jats:p>"],"publicationDate":"2019-07-18","publisher":"Walter de Gruyter GmbH","embargoEndDate":null,"sources":["Crossref","Annales Mathematicae Silesianae, Vol 33, Iss 1, Pp 55-65 (2019)"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Annales Mathematicae Silesianae","issnPrinted":"0860-2107","issnOnline":"2391-4238","issnLinking":null,"ep":"65","iss":null,"sp":"55","vol":"33","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::daa8254aa243618d75167a676215eb39","originalIds":["10.2478/amsil-2019-0005","50|doiboost____|daa8254aa243618d75167a676215eb39","50|doajarticles::9ac8241faa215f03bb9c66290cb52b6a","oai:doaj.org/article:d525303f3fa0420594152db006e72144","2950685760"],"pids":[{"scheme":"doi","value":"10.2478/amsil-2019-0005"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":3.2116576e-9,"popularity":2.2616646e-9,"impulse":2,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.2478/amsil-2019-0005"}],"license":"CC BY NC ND","type":"Article","urls":["https://doi.org/10.2478/amsil-2019-0005"],"publicationDate":"2019-07-18","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.2478/amsil-2019-0005"}],"license":"CC BY","type":"Article","urls":["https://www.sciendo.com/pdf/10.2478/amsil-2019-0005"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.2478/amsil-2019-0005"}],"type":"Article","urls":["https://doaj.org/article/d525303f3fa0420594152db006e72144"],"publicationDate":"2019-09-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2950685760"},{"scheme":"doi","value":"10.2478/amsil-2019-0005"}],"type":"Other literature type","urls":["https://dx.doi.org/10.2478/amsil-2019-0005"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":true} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
