Yayın: Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
item.page.program
item.page.orgauthor
item.page.kuauthor
item.page.coauthor
Yazarlar
Danışman
Tarih
item.page.language
item.page.type
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
Abstract In this paper, we obtain a closed form for <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${F_{\sum\nolimits_{i = 1}^k {} }}$ , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${P_{\sum\nolimits_{i = 1}^k {} }}$ and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${F_{\sum\nolimits_{i = 1}^n {} }}$ , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${P_{\sum\nolimits_{i = 1}^n {} }}$ and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${J_{\sum\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.
Açıklama
item.page.source
Yayınevi
Walter de Gruyter GmbH
