Yayın:
Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers

Placeholder

Akademik Birimler

item.page.program

item.page.orgauthor

item.page.kuauthor

item.page.coauthor

Danışman

item.page.language

item.page.type

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

Abstract In this paper, we obtain a closed form for <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${F_{\sum\nolimits_{i = 1}^k {} }}$ , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${P_{\sum\nolimits_{i = 1}^k {} }}$ and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>k</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${F_{\sum\nolimits_{i = 1}^n {} }}$ , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${P_{\sum\nolimits_{i = 1}^n {} }}$ and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mrow> <m:mi>J</m:mi> </m:mrow> <m:mrow> <m:msubsup> <m:mo>?</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow/> </m:mrow> </m:msub> </m:mrow> </m:math> ${J_{\sum\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.

Açıklama

item.page.source

Yayınevi

Walter de Gruyter GmbH

item.page.keywords

Alıntı

Koleksiyonlar

Endorsement

Review

item.page.supplemented

item.page.referenced

0

Views

0

Downloads

View PlumX Details


İlişkili Sürdürülebilir Kalkınma Hedefleri