Publication:
Some Properties of Dual Fibonacci and Dual Lucas Octonions

dc.contributor.authorÜnal Z., Tokeşer Ü., Bilgici G.
dc.contributor.authorUnal, Z, Tokeser, U, Bilgici, G
dc.date.accessioned2023-05-09T15:33:04Z
dc.date.available2023-05-09T15:33:04Z
dc.date.issued2017-06-01
dc.date.issued2017.01.01
dc.description.abstractHalici (Adv Appl Clifford Algebr 25(4):905–914, 2015) defined dual Fibonacci and dual Lucas octonions by the relations Q~ n= Qn+ εQn+1 and P~ n= Pn+ εPn+1 for every integer n where Qn and Pn are the Fibonacci and Lucas octonions respectively, and ε is the dual unit. The aim of this paper is to investigate properties of dual Fibonacci and dual Lucas octonions. After obtaining the Binet formulas for the sequences {Q~n}n=0∞ and {P~n}n=0∞, we derive some identities for these sequences such as Catalan’s, Cassini’s and d’Ocagne’s identities.
dc.identifier.doi10.1007/s00006-016-0724-4
dc.identifier.eissn1661-4909
dc.identifier.endpage1916
dc.identifier.issn0188-7009
dc.identifier.scopus2-s2.0-84986270687
dc.identifier.startpage1907
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12402
dc.identifier.volume27
dc.identifier.wosWOS:000401669000060
dc.relation.ispartofAdvances in Applied Clifford Algebras
dc.relation.ispartofADVANCES IN APPLIED CLIFFORD ALGEBRAS
dc.rightsfalse
dc.subjectDual Fibonacci octonion | Dual Lucas octonion | Fibonacci sequence | Lucas sequence
dc.titleSome Properties of Dual Fibonacci and Dual Lucas Octonions
dc.titleSome Properties of Dual Fibonacci and Dual Lucas Octonions
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume27
relation.isScopusOfPublication0c16c88e-8bcd-4f30-9b55-ca50c7cde5f6
relation.isScopusOfPublication.latestForDiscovery0c16c88e-8bcd-4f30-9b55-ca50c7cde5f6
relation.isWosOfPublication3d2052f0-22de-4ac4-80b8-7d5112f95f71
relation.isWosOfPublication.latestForDiscovery3d2052f0-22de-4ac4-80b8-7d5112f95f71

Files

Collections