Publication:
HANDLING the EFFECT of ATTRIBUTE SELECTION on SUPPORT VECTOR MACHINES for DETECTING CHRONIC KIDNEY DISEASE

No Thumbnail Available

Date

2022-12-01, 2022.01.01

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Metrikler

Search on Google Scholar

Total Views

0

Total Downloads

0

Abstract

Chronic kidney disease is a gradual loss of kidney function. Determining the important attributes that describe this disease plays a key role in screening and examining the disease by field specialists. The main aim of this study is to comprehensively compare the attribute selection algorithms for predicting this disease. With this aim, several models were built and compared using well-known performance metrics such as accuracy, sensitivity, and specificity in the experiments. Two different attribute selection methods; the stability selection and the minimum redundancy maximum relevance were compared comprehensively on the unbalanced and balanced datasets. In this framework, the stability selection method gave the important attributes. The support vector machines with radial bases function kernel successfully performed the classification using these attributes for this problem.

Description

Keywords

Chronic kidney disease | machine learning | significance of attribute selection | support vector machines

Citation

Collections